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A general framework for hybrids of hidden Markov models (HMMs)
and neural networks (NNs) called hidden neural networks (HNNs) is de-
scribed. The article begins by reviewing standard HMMs and estimation
by conditional maximum likelihood, which is used by the HNN. In the
HNN, the usual HMM probability parameters are replaced by the outputs
of state-specific neural networks. As opposed to many other hybrids, the
HNN is normalized globally and therefore has a valid probabilistic inter-
pretation. All parameters in the HNN are estimated simultaneously ac-
cording to the discriminative conditional maximum likelihood criterion.
The HNN can be viewed as an undirected probabilistic independence
network (a graphical model), where the neural networks provide a com-
pact representation of the clique functions. An evaluation of the HNN
on the task of recognizing broad phoneme classes in the TIMIT database
shows clear performance gains compared to standard HMMs tested on
the same task.

1 Introduction

Hidden Markov models (HMMs) is one of the most successful modeling ap-
proaches for acoustic events in speech recognition (Rabiner, 1989; Juang &
Rabiner, 1991), and more recently they have proved useful for several prob-
lems in biological sequence analysis like protein modeling and gene find-
ing (see, e.g., Durbin, Eddy, Krogh, & Mitchison, 1998; Eddy, 1996; Krogh,
Brown, Mian, Sjölander, & Haussler, 1994). Although the HMM is good
at capturing the temporal nature of processes such as speech, it has a very
limited capacity for recognizing complex patterns involving more than first-
order dependencies in the observed data. This is due to the first-order state
process and the assumption of state-conditional independence of observa-
tions. Multilayer perceptrons are almost the opposite: they cannot model
temporal phenomena very well but are good at recognizing complex pat-
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terns. Combining the two frameworks in a sensible way can therefore lead
to a more powerful model with better classification abilities.

The starting point for this work is the so-called class HMM (CHMM),
which is basically a standard HMM with a distribution over classes assigned
to each state (Krogh, 1994). The CHMM incorporates conditional maximum
likelihood (CML) estimation (Juang & Rabiner, 1991; Nádas, 1983; Nádas,
Nahamoo, & Picheny, 1988). In contrast to the widely used maximum like-
lihood (ML) estimation, CML estimation is a discriminative training al-
gorithm that aims at maximizing the ability of the model to discriminate
between different classes. The CHMM can be normalized globally, which
allows for nonnormalizing parameters in the individual states, and this en-
ables us to generalize the CHMM to incorporate neural networks in a valid
probabilistic way.

In the CHMM/NN hybrid, which we call a hidden neural network
(HNN), some or all CHMM probability parameters are replaced by the
outputs of state-specific neural networks that take the observations as in-
put. The model can be trained as a whole from observation sequences with
labels by a gradient-descent algorithm. It turns out that in this algorithm,
the neural networks are updated by standard backpropagation, where the
errors are calculated by a slightly modified forward-backward algorithm.

In this article, we first give a short introduction to standard HMMs. The
CHMM and conditional ML are then introduced, and a gradient descent
algorithm is derived for estimation. Based on this, the HNN is described next
along with training issues for this model, and finally we give a comparison to
other hybrid models. The article concludes with an evaluation of the HNN
on the recognition of five broad phoneme classes in the TIMIT database
(Garofolo et al., 1993). Results on this task clearly show a better performance
of the HNN compared to a standard HMM.

2 Hidden Markov Models

To establish notation and set the stage for describing CHMMs and HNNs,
we start with a brief overview of standard hidden Markov models. (For
a more comprehensive introduction, see Rabiner, 1989; Juang & Rabiner,
1991.) In this description we consider discrete first-order HMMs, where
the observations are symbols from a finite alphabet A. The treatment of
continuous observations is very similar (see, e.g., Rabiner, 1989).

The standard HMM is characterized by a set of N states and two con-
current stochastic processes: a first-order Markov process between states
modeling the temporal structure of the data and an emission process for
each state modeling the locally stationary part of the data. The state pro-
cess is given by a set of transition probabilities, θij, giving the probability
of making a transition from state i to state j, and the emission process in
state i is described by the probabilities, φi(a), of emitting symbol a ∈ A in
state i. The φ’s are usually called emission probabilities, but we use the term
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match probabilities here. We observe only the sequence of outputs from the
model, and not the underlying (hidden) state sequence, hence the name
hidden Markov model. The set2 of all transition and emission probabilities
completely specifies the model.

Given an HMM, the probability of an observation sequence, x = x1, . . . , xL,
of L symbols from the alphabetA is defined by

P(x|2) =
∑
π

P(x, π |2) =
∑
π

L∏
l=1

θπl−1πlφπl(xl). (2.1)

Here π = π1, . . . , πL is a state sequence; πi is the number of the ith state
in the sequence. Such a state sequence is called a path through the model.
An auxiliary start state, π0 = 0, has been introduced such that θ0i denotes
the probability of starting a path in state i. In the following we assume that
state N is an end state: a nonmatching state with no outgoing transitions.

The probability 2.1 can be calculated efficiently by a dynamic program-
ming-like algorithm known as the forward algorithm. Let αi(l) = P(x1, . . . ,

xl, πl= i |2), that is, the probability of having matched observations x1, . . . , xl
and being in state i at time l. Then the following recursion holds for 1 ≤ i ≤ N
and 1 < l ≤ L,

αi(l) = φi(xl)
∑

j

αj(l− 1)θji, (2.2)

and P(x|2) = αN(L). The recursion is initialized by αi(1) = θ0iφi(x1) for
1 ≤ i ≤ N.

The parameters of the model can be estimated from data by an ML
method. If multiple sequences of observations are available for training,
they are assumed independent, and the total likelihood of the model is just
a product of probabilities of the form 2.1 for each of the sequences. The
generalization from one to many observation sequences is therefore trivial,
and we will consider only one training sequence in the following. The like-
lihood of the model, P(x|2), given in equation 2.1, is commonly maximized
by the Baum-Welch algorithm, which is an expectation-maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977) guaranteed to converge to a
local maximum of the likelihood. The Baum-Welch algorithm iteratively
reestimates the model parameters until convergence, and for the transition
probabilities the reestimation formulas are given by

θij ←
∑

l nij(l)∑
j′l′ nij′(l′)

= nij∑
j′ nij′

, (2.3)

where nij(l) = P(πl−1 = i, πl = j | x,2) is the expected number of times a
transition from state i to state j is used at time l. The reestimation equations
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for the match probabilities can be expressed in a similar way by defining
ni(l) = P(πl = i | x,2) as the expected number of times we are in state i at
time l. Then the reestimation equations for the match probabilities are given
by

φi(a)←
∑

l ni(l)δxl,a∑
la′ ni(l)δxl,a′

= ni(a)∑
a′ ni(a′)

. (2.4)

The expected counts can be computed efficiently by the forward-back-
ward algorithm. In addition to the forward recursion, a similar recursion
for the backward variable βi(l) is introduced. Let βi(l) = P(xl+1, . . . , xL |πl=
i,2), that is, the probability of matching the rest of the sequence xl+1, . . . , xL
given that we are in state i at time l. After initializing by βN(L) = 1, the
recursion runs from l = L− 1 to l = 1 as

βi(l) =
N∑

j=1

θijβj(l+ 1)φj(xl+1), (2.5)

for all states 1 ≤ i ≤ N. Using the forward and backward variables, nij(l)
and ni(l) can easily be computed:

nij(l) = P(πl−1= i, πl= j | x,2) = αi(l− 1)θijφj(xl)βj(l)
P(x|2) (2.6)

ni(l) = P(πl= i | x,2) = αi(l)βi(l)
P(x|2) . (2.7)

2.1 Discriminative Training. In many problems, the aim is to predict
what class an input belongs to or what sequence of classes it represents.
In continuous speech recognition, for instance, the object is to predict the
sequence of words or phonemes for a speech signal. To achieve this, a
(sub)model for each class is usually estimated by ML independent of all
other models and using only the data belonging to this class. This proce-
dure maximizes the ability of the model to reproduce the observations in
each class and can be expressed as

2̂ML = argmax
2

P(x, y|2) = argmax
2

[P(x|2y)P(y|2)], (2.8)

where y is the class or sequence of class labels corresponding to the ob-
servation sequence x and 2y is the model for class y or a concatenation
of submodels corresponding to the observed labels. In speech recognition,
P(x|2y) is often denoted the acoustic model probability, and the language
model probability P(y|2) is usually assumed constant during training of
the acoustic models. If the true source producing the data is contained in
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the model space, ML estimation based on an infinite training set can give
the optimal parameters for classification (Nádas et al., 1988; Nádas, 1983),
provided that the global maximum of the likelihood can be reached. How-
ever, in any real-world application, it is highly unlikely that the true source
is contained in the space of HMMs, and the training data are indeed limited.
This is the motivation for using discriminative training.

To accommodate discriminative training, we use one big model and as-
sign a label to each state; all the states that are supposed to describe a certain
class C are assigned label C. A state can also have a probability distribution
ψi(c) over labels, so that several labels are possible with different probabil-
ities. This is discussed in Krogh (1994) and Riis (1998a), and it is somewhat
similar to the input/output HMM (IOHMM) (Bengio & Frasconi, 1996). For
brevity, however, we here limit ourselves to consider only one label for each
state, which we believe is the most interesting for many applications. Be-
cause each state has a class label or a distribution over class labels, this sort
of model was called a class HMM (CHMM) in Krogh (1994).

In the CHMM, the objective is to predict the labels associated with x, and
instead of ML estimation, we therefore choose to maximize the probability
of the correct labeling,

2̂CML = argmax
2

P(y|x,2) = argmax
2

P(x, y|2)
P(x|2) , (2.9)

which is also called conditional maximum likelihood (CML) estimation
(Nádas, 1983). If the language model is assumed constant during training,
CML estimation is equivalent to maximum mutual information estimation
(Bahl, Brown, de Souza, & Mercer, 1986).

From equation 2.9, we observe that computing the probability of the la-
beling requires computation of (1) the probability P(x, y|2) in the clamped
phase and (2) the probability P(x|2) in the free-running phase. The term
free running means that the labels are not taken into account, so this phase
is similar to the decoding phase, where we wish to find the labels for an
observation sequence. The constraint by the labels during training gives
rise to the name clamped phase; this terminology is borrowed from the Boltz-
mann machine literature (Ackley, Hinton, & Sejnowski, 1985; Bridle, 1990).
Thus, CML estimation adjusts the model parameters so as to make the free-
running recognition model as close as possible to the clamped model. The
probability in the free-running phase is computed using the forward algo-
rithm described for standard HMMs, whereas the probability in the clamped
phase is computed by considering only paths C(y) that are consistent with
the observed labeling,

P(x, y|2) =
∑
π∈C(y)

P(x, π |2). (2.10)
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This quantity can be calculated by a variant of the forward algorithm to be
discussed below.

Unfortunately the Baum-Welch algorithm is not applicable to CML es-
timation (see, e.g., Gopalakrishnan, Kanevsky, Nádas, & Nahamoo, 1991).
Instead, one can use a gradient-descent-based approach, which is also ap-
plicable to the HNNs discussed later. To calculate the gradients, we switch
to the negative log-likelihood, and define

L = − log P(y|x,2) = Lc − Lf (2.11)

Lc = − log P(x, y|2) (2.12)

Lf = − log P(x|2). (2.13)

The derivative of Lf for the free-running model with regard to a generic
parameter ω ∈ 2 can be expressed as,

∂Lf

∂ω
= − 1

P(x|2)
∂P(x|2)
∂ω

= −
∑
π

1
P(x|2)

∂P(x, π |2)
∂ω

= −
∑
π

P(x, π |2)
P(x|2)

∂ log P(x, π |2)
∂ω

= −
∑
π

P(π |x,2)∂ log P(x, π |2)
∂ω

. (2.14)

This gradient is an expectation over all paths of the derivative of the com-
plete data log-likelihood log P(x, π |2). Using equation 2.1, this becomes

∂Lf

∂ω
= −

∑
l,i

ni(l)
φi(xl)

∂φi(xl)

∂ω
−
∑
l,i,j

nij(l)
θij

∂θij

∂ω
. (2.15)

The gradient of the negative log-likelihoodLc in the clamped phase is com-
puted similarly, but the expectation is taken only for the allowed paths C(y),

∂Lc

∂ω
= −

∑
l,i

mi(l)
φi(xl)

∂φi(xl)

∂ω
−
∑
l,i,j

mij(l)
θij

∂θij

∂ω
, (2.16)

where mij(l) = P(πl−1 = i, πl = j | x, y,2) is the expected number of times
a transition from state i to state j is used at time l for the allowed paths.
Similarly, mi(l) = P(πl= i | x, y,2) is the expected number of times we are in
state i at time l for the allowed paths. These counts can be computed using
the modified forward-backward algorithm, discussed below.
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For a standard model, the derivatives in equations 2.15 and 2.16 are
simple. When ω is a transition probability, we obtain

∂L
∂θij
= −mij − nij

θij
. (2.17)

The derivative ∂L
∂φi(a)

is of exactly the same form, except that mij and nij are
replaced by mi(a) and ni(a), and θij by φi(a).

When minimizing L by gradient descent, it must be ensured that the
probability parameters remain positive and properly normalized. Here we
use the same method as Bridle (1990) and Baldi and Chauvin (1994) and do
gradient descent in another set of unconstrained variables. For the transition
probabilities, we define

θij = ezij∑
j′ e

zij′ , (2.18)

where zij are the new unconstrained auxiliary variables, and θij always sum
to one by construction. Gradient descent in the z’s by zij ← zij − η ∂L∂zij

yields
a change in θ given by

θij ←
θij exp(−η ∂L

∂zij
)∑

j′ θij′ exp(−η ∂L
∂zij′
)
. (2.19)

The gradients with respect to zij can be expressed entirely in terms of θij and
mij − nij,

∂L
∂zij
= −[mij − nij − θij

∑
j′
(mij′ − nij′)], (2.20)

and inserting equation 2.20 into 2.19 yields an expression entirely in θs.
Equations for the emission probabilities are obtained in exactly the same
way. This approach is slightly more straightforward than the one proposed
in Baldi and Chauvin (1994), where the auxiliary variables are retained and
the parameters of the model calculated explicitly from equation 2.18 after
updating the auxiliary variables. This type of gradient descent is very similar
to the exponentiated gradient descent proposed and investigated in Kivinen
and Warmuth (1997) and Helmbold, Schapire, Singer, and Warmuth (1997).

2.2 The CHMM as a Probabilistic Independence Network. A large va-
riety of probabilistic models can be represented as graphical models (Lau-
ritzen, 1996), including the HMM and its variants. The relation between
HMMs and probabilistic independence networks is thoroughly described
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Figure 1: The DPIN (left) and UPIN (right) for an HMM.
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Figure 2: The DPIN (left) and UPIN (right) for a CHMM.

in Smyth, Heckerman, and Jordan (1997), and here we follow their termi-
nology and refer the reader to that paper for more details.

An HMM can be represented as both a directed probabilistic indepen-
dence network (DPIN) and an undirected one (UPIN) (see Figure 1). The
DPIN shows the conditional dependencies of the variables in the HMM—
both the observable ones (x) and the unobservable ones (π ). For instance,
the DPIN in Figure 1 shows that conditioned on πl, xl is independent of
x1, . . . , xl−1 and π1, . . . , πl−1, that is, P(xl|x1, . . . , xl−1, π1, . . . , πl) = P(xl|πl).
Similarly, P(πl|x1, . . . , xl−1, π1, . . . , πl−1) = P(πl|πl−1). When “marrying”
unconnected parents of all nodes in a DPIN and removing the directions,
the moral graph is obtained. This is a UPIN for the model. For the HMM,
the UPIN has the same topology as shown in Figure 1.

In the CHMM there is one more set of variables (the y’s), and the PIN
structures are shown in Figure 2. In a way, the CHMM can be seen as an
HMM with two streams of observables, x and y, but they are usually not
treated symmetrically. Again the moral graph is of the same topology, be-
cause no node has more than one parent.

It turns out that the graphical representation is the best way to see the
difference between the CHMM and the IOHMM. In the IOHMM, the output
yl is conditioned on both the input xl and the state πl, but more important,
the state is conditioned on the input. This is shown in the DPIN of Figure 3
(Bengio & Frasconi, 1996). In this case the moral graph is different, because
πl has two unconnected parents in the DPIN.

It is straightforward to extend the CHMM to have the label y conditioned
on x, meaning that there would be arrows from xl to yl in the DPIN for the
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Figure 3: The DPIN for an IOHMM (left) is adapted from Bengio and Frasconi
(1996). The moral graph to the right is a UPIN for an IOHMM.

CHMM. Then the only difference between the DPINs for the CHMM and the
IOHMM would be the direction of the arrow between xl and πl. However,
the DPIN for the CHMM would still not contain any “unmarried parents”
and thus their moral graphs would be different.

2.3 Calculation of Quantities Consistent with the Labels. Generally
there are two different types of labeling: incomplete and complete label-
ing (Juang & Rabiner, 1991). We describe the modified forward-backward
algorithm for both types of labeling below.

2.3.1 Complete Labels. In this case, each observation has a label, so the
sequence of labels denoted y = y1, . . . , yL is as long as the sequence of ob-
servations. Typically the labels come in groups, that is, several consecutive
observations have the same label. In speech recognition, the complete la-
beling corresponds to knowing which word or phoneme each particular
observation xl is associated with.

For complete labeling, the expectations in the clamped phase are averages
over “allowed” paths through the model—paths in which the labels of the
states agree with the labeling of the observations. Such averages can be
calculated by limiting the sum in the forward and backward recursions to
states with the correct label. The new forward and backward variables, α̃i(l)
and β̃i(l), are defined as αi(l) (see equation 2.2) and βi(l) (see equation 2.5),
but with φi(xl) replaced by φi(xl)δyl,ci . The expected counts mij(l) and mi(l)
for the allowed paths are calculated exactly as nij(l) and ni(l), but using the
new forward and backward variables.

If we think of αi(l) (or βi(l)) as a matrix, the new algorithm corresponds
to masking this matrix such that only allowed regions are calculated (see
Figure 4). Therefore the calculation is faster than the standard forward (or
backward) calculation of the whole matrix.

2.3.2 Incomplete Labels. When dealing with incomplete labeling, the
whole sequence of observations is associated with a shorter sequence of
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Figure 4: (Left) A very simple model with four states, two labeled A and two
labeled B. (Right) The α̃ matrix for an example of observations x1, . . . , x14 with
complete labels. The gray areas of the matrix are calculated as in the standard
forward algorithm, whereas α̃ is set to zero in the white areas. The β̃ matrix is
calculated in the same way, but from right to left.

labels y = y1, . . . , yS, where S < L. The label of each individual observa-
tion is unknown; only the order of labels is available. In continuous speech
recognition, the correct string of phonemes is known (because the spoken
words are known in the training set), but the time boundaries between
them are unknown. In such a case, the sequence of observations may be
considerably longer than the label sequence. The case S = 1 corresponds to
classifying the whole sequence into one of the possible classes (e.g., isolated
word recognition).

To compute the expected counts for incomplete labeling, one has to en-
sure that the sequence of labels matches the sequence of groups of states with
the same label.1 This is less restrictive than the complete label case. An easy
way to ensure this is by rearranging the (big) model temporarily for each
observation sequence and collecting the statistics (the m’s) by running the
standard forward-backward algorithm on this model. This is very similar
to techniques already used in several speech applications (see, e.g., Lee,
1990), where phoneme (sub)models corresponding to the spoken word or
sentence are concatenated. Note, however, that for the CHMM, the transi-
tions between states with different labels retain their original value in the
temporary model (see Figure 5).

1 If multiple labels are allowed in each state, an algorithm similar to the forward-
backward algorithm for asynchronous IOHMMs (Bengio & Bengio, 1996) can be used; see
Riis (1998a).



Hidden Neural Networks 551

A

A End

Begin B

B

A

A

B

B

A

A

1

2

3

4

1

2

1

2

3

4

Figure 5: For the same model as in Figure 4, this example shows how the model
is temporarily rearranged for gathering statistics (i.e., calculation of m values)
for a sequence with incomplete labels ABABA.

3 Hidden Neural Networks

HMMs are based on a number of assumptions that limit their classification
abilities. Combining the CHMM framework with neural networks can lead
to a more flexible and powerful model for classification. The basic idea of the
HNN presented here is to replace the probability parameters of the CHMM
by state-specific multilayer perceptrons that take the observations as input.
Thus, in the HNN, it is possible to assign up to three networks to each state:
(1) a match network outputting the “probability” that the current observation
matches a given state, (2) a transition network that outputs transition “proba-
bilities” dependent on observations, and (3) a label network that outputs the
probability of the different labels in this state. We have put “probabilities”
in quotes because the output of the match and transition networks need not
be properly normalized probabilities, since global normalization is used.
For brevity we limit ourselves here to one label per state; the label networks
are not present. The case of multiple labels in each state is treated in more
detail in Riis (1998a).

The CHMM match probabilityφi(xl) of observation xl in state i is replaced
by the output of a match network, φi(sl;wi), assigned to state i. The match
network in state i is parameterized by a weight vector wi and takes the
vector sl as input. Similarly, the probability θij of a transition from state i
to j is replaced by the output of a transition network θij(sl;ui), which is
parameterized by weights ui. The transition network assigned to state i has
Ji outputs, whereJi is the number of (nonzero) transitions from state i. Since
we consider only states with one possible label, the label networks are just
delta functions, as in the CHMM described earlier.

The network input sl corresponding to xl will usually be a window
of context around xl, such as a symmetrical context window of 2K + 1
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observations,2 xl−K, xl−K+1, . . . , xl+K; however, it can be any sort of infor-
mation related to xl or the observation sequence in general. We will call sl
the context of observation xl, but it can contain all sorts of other information
and can differ from state to state. The only limitation is that it cannot depend
on the path through the model, because then the state process is no longer
first-order Markovian.

Each of the three types of networks in an HNN state can be omitted or
replaced by standard CHMM probabilities. In fact, all sorts of combinations
with standard CHMM states are possible. If an HNN contains only transi-
tion networks (that is, φi(sl;wi) = 1 for all i, l) the model can be normalized
locally by using a softmax output function as in the IOHMM. However, if it
contains match networks, it is usually impossible to make

∑
x∈X P(x|2) = 1

by normalizing locally even if the transition networks are normalized. A
probabilistic interpretation of the HNN is instead ensured by global nor-
malization. We define the joint probability

P(x, y, π |2) = 1
Z(2)

R(x, y, π |2)

= 1
Z(2)

∏
l

θπl−1πl(sl;uπl−1)φπl(sl;wπl)δyl,cπl , (3.1)

where the normalizing constant is Z(2) =∑x,y,π R(x, y, π |2). From this,

P(x, y|2) = 1
Z(2)

R(x, y|2) = 1
Z(2)

∑
π

R(x, y, π |2)

= 1
Z(2)

∑
π∈C(y)

R(x, π |2), (3.2)

where

R(x, π |2) =
∏

l

θπl−1πl(sl;uπl−1)φπl(sl;wπl). (3.3)

Similarly,

P(x|2) = 1
Z(2)

R(x|2) = 1
Z(2)

∑
y,π

R(x, y, π |2)

= 1
Z(2)

∑
π

R(x, π |2). (3.4)

2 If the observations are inherently discrete (as in protein modeling), they can be en-
coded in binary vectors and then used in the same manner as continuous observation
vectors.
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Figure 6: The UPIN for an HNN using transition networks that take only the
current observation as input (sl = xl).

It is sometimes possible to compute the normalization factor Z, but not
in all cases. However, for CML estimation, the normalization factor cancels
out,

P(y|x,2) = R(x, y|2)
R(x|2) . (3.5)

The calculation of R(x|2) and R(x, y|2) can be done exactly as the cal-
culation of P(x|2) and P(x, y|2) in the CHMM, because the forward and
backward algorithms are not dependent on the normalization of probabili-
ties.

Because one cannot usually normalize the HNN locally, there exists no
directed graph (DPIN) for the general HNN. For UPINs, however, local
normalization is not required. For instance, the Boltzmann machine can be
drawn as a UPIN, and the Boltzmann chain (Saul & Jordan, 1995) can actu-
ally be described by a UPIN identical to the one for a globally normalized
discrete HMM in Figure 1. A model with a UPIN is characterized by its clique
functions, and the joint probability is the product of all the clique functions
(Smyth et al., 1997). The three different clique functions are clearly seen in
equation 3.1. In Figure 6 the UPIN for an HNN with transition networks
and sl = xl is shown; this is identical to Figure 3 for the IOHMM, except that
it does not have edges from x to y. Note that the UPIN remains the same if
match networks (with sl = xl) are used as well. The graphical representation
as a UPIN for an HNN with no transition networks and match networks
having a context of one to each side is shown in Figure 7 along with the
three types of cliques.

A number of authors have investigated compact representations of con-
ditional probability tables in DPINs (see Boutilier, Friedman, Goldszmidt, &
Koller, 1996, and references therein). The HNN provides a similar compact
representation of clique functions in UPINs, and this holds also for models
that are more general than the HMM-type graphs discussed in this article.

The fact that the individual neural network outputs do not have to nor-
malize gives us a great deal of freedom in selecting the output activation
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Figure 7: (Left) The UPIN of an HNN with no transition networks and match
networks having a context of one to each side. (Right) The three different clique
types contained in the graph.

function. A natural choice is a standard (asymmetric) sigmoid or an expo-
nential output activation function, g(h) = exp(h), where h is the input to the
output unit in question.

Although the HNN is a very intuitive and simple extension of the stan-
dard CHMM, it is a much more powerful model. First, neural networks
can implement complex functions using far fewer parameters than, say, a
mixture of gaussians. Furthermore, the HNN can directly use observation
context as input to the neural networks and thereby exploit higher-order cor-
relations between consecutive observations, which is difficult in standard
HMMs. This property can be particularly useful in problems like speech
recognition, where the pronunciation of one phoneme is highly influenced
by the acoustic context in which it is uttered. Finally, the observation con-
text dependency on the transitions allows the HNN to model the data as
successive steady-state segments connected by “nonstationary” transitional
regions. For speech recognition this is believed to be very important (see,
e.g., Bourlard, Konig, & Morgan, 1994; Morgan, Bourlard, Greenberg, and
Hermansky, 1994).

3.1 Training an HNN. As for the CHMM, it is not possible to train the
HNN using an EM algorithm; instead, we suggest training the model us-
ing gradient descent. From equations 2.15 and 2.16, we find the following
gradients of L = − log P(y|x,2) with regard to a generic weight ωi in the
match or transition network assigned to state i,

∂L
∂ωi =−

∑
l

mi(l)−ni(l)
φi(sl;wi)

∂φi(sl;wi)

∂ωi −
∑

lj

mij(l)−nij(l)
θij(sl;ui)

∂θij(sl;ui)

∂ωi , (3.6)

where it is assumed that networks are not shared between states. In the back-
propagation algorithm for neural networks (Rumelhart, Hinton, & Williams,
1986) the squared error of the network is minimized by gradient descent.
For an activation function g, this gives rise to a weight update of the form
1w ∝ −E× ∂g

∂w . We therefore see from equation 3.6 that the neural networks
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are trained using the standard backpropagation algorithm where the quan-
tity to backpropagate is E = [mi(l)− ni(l)]/φi(sl;wi) for the match networks
and E = [mij(l) − nij(l)]/θij(sl;ui) for the transition networks. The m and n
counts are calculated as before by running two forward-backward passes:
once in the clamped phase (the m’s) and once in the free-running phase
(the n’s).

The training can be done in either batch mode, where all the networks
are updated after the entire training set has been presented to the model, or
sequence on-line mode, where the update is performed after the presenta-
tion of each sequence. There are many other variations possible. Because of
the l dependence of mij(l), mi(l) and the similar n’s, the training algorithm is
not as simple as for standard HMMs; we have to do a backpropagation pass
for each l. Because the expected counts are not available before the forward-
backward passes have been completed, we must either store or recalculate
all the neural network unit activations for each input sl before running back-
propagation. Storing all activations can require large amounts of memory
even for small networks if the observation sequences are very long (which
they typically are in continuous speech). For such tasks, it is necessary to
recalculate the network unit activations before each backpropagation pass.
Many of the standard modifications of the backpropagation algorithm can
be incorporated, such as momentum and weight decay (Hertz, Krogh, &
Palmer, 1991). It is also possible to use conjugate gradient descent or ap-
proximative second-order methods like pseudo-Gauss-Newton. However,
in a set of initial experiments for the speech recognition task reported in sec-
tion 4, on-line gradient methods consistently gave the fastest convergence.

4 Comparison to Other Work

Recently several HMM/NN hybrids have been proposed in the literature.
The hybrids can roughly be divided into those estimating the parameters
of the HMM and the NN separately (see, e.g., Renals, Morgan, Bourlard,
Cohen, & Franco, 1994; Robinson, 1994; Le Cerf, Ma, & Compernolle, 1994;
McDermott & Katagiri, 1991) and those applying simultaneous or joint es-
timation of all parameters as in the HNN (see, e.g., Baldi & Chauvin, 1996;
Konig, Bourlard, & Morgan, 1996; Bengio, De Mori, Flammia, & Kompe,
1992; Johansen, 1994; Valtchev, Kapadia, & Young, 1993; Bengio & Frasconi,
1996; Hennebert, Ris, Bourlard, Renals, & Morgan, 1997; Bengio, LeCun,
Nohl, & Burges, 1995).

In Renals et al. (1994) a multilayer perceptron is trained separately to
estimate phoneme posterior probabilities, which are scaled with the ob-
served phoneme frequencies and then used instead of the usual emission
densities in a continuous HMM. A similar approach is taken in Robinson
(1994), but here a recurrent NN is used. A slightly different method is used
in McDermott and Katagiri (1991) and Le Cerf et al. (1994), where the vector
quantizer front end in a discrete HMM is replaced by a multilayer percep-
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tron or a learning vector quantization network (Kohonen, Barna, & Chrisley,
1988). In contrast, our approach uses only one output for each match net-
work whereby continuous and discrete observations are treated the same.

Several authors have proposed methods in which all parameters are es-
timated simultaneously as in the HNN. In some hybrids, a big multilayer
perceptron (Bengio et al., 1992; Johansen & Johnsen, 1994) or recurrent net-
work (Valtchev et al., 1993) performs an adaptive input transformation of
the observation vectors. Thus, the network outputs are used as new obser-
vation vectors in a continuous density HMM, and simultaneous estimation
of all parameters is performed by backpropagating errors calculated by the
HMM into the neural network in a way similar to the HNN training. Our
approach is somewhat similar to the idea of adaptive input transformations,
but instead of retaining the computationally expensive mixture densities,
we replace these by match networks. This is also done in Bengio et al. (1995),
where a large network with the same number of outputs as there are states
in the HMM is trained by backpropagating errors calculated by the HMM.
Instead of backpropagating errors from the HMM into the neural network,
Hennebert et al. (1997) and Senior and Robinson (1996) use a two-step it-
erative procedure to train the networks. In the first step, the current model
is used for estimating a set of “soft” targets for the neural networks, and
then the network is trained on these targets. This method extends the scaled
likelihood approach by Renals et al. (1994) to use global estimation where
training is performed by a generalized EM (GEM) algorithm (Hennebert
et al., 1997).

The IOHMM (Bengio and Frasconi, 1996) and the CHMM/HNN have
different graphical representations, as seen in Figures 2, 3, and 7. However,
the IOHMM is very similar to a locally normalized HNN with a label and
transition network in each state, but no match network. An important dif-
ference between the two is in the decoding, where the IOHMM uses only
a forward pass, which makes it insensitive to future events but makes the
decoding “real time.” (See Riis, 1998a, for more details.)

5 Experiments

In this section we give an evaluation of the HNN on the task introduced in
Johansen (1994) of recognizing five broad phoneme classes in continuous
read speech from the TIMIT database (Garofolo et al., 1993): vowels (V),
consonants (C), nasals (N), liquids (L) and silence (S) (see Table 1).

We use one sentence from each of the 462 speakers in the TIMIT training
set for training, and the results are reported for the recommended TIMIT
core test set containing 192 sentences. An additional validation set of 144
sentences has been used to monitor performance during training. The raw
speech signal is preprocessed using a standard mel cepstral preprocessor,
which outputs a 26-dimensional feature vector each 10 ms (13 mel cepstral
features and 13 delta features). These vectors are normalized to zero mean
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Table 1: Definition of Broad Phoneme Classes.

Broad Class TIMIT Phoneme Label

Vowel (V) iy ih eh ae ix ax ah ax-h uw uh ao aa ey ay oy aw ow ux
Consonant (C) ch jh dh b d dx g p t k z zh v f th s sh hh hv
Nasal (N) m n en ng em nx eng
Liquid (L) l el r y w er axr
Silence (S) h# pau

and unit variance. Each of the five classes is modeled by a simple left-to-
right three-state model. The last state in any submodel is fully connected
to the first state of all other submodels. (Further details are given in Riis &
Krogh, 1997.)

5.1 Baseline Results. In Table 2, the results for complete label train-
ing are shown for the baseline system, which is a discrete CHMM using a
codebook of 256 codebook vectors. The results are reported in the standard
measure of percentage accuracy, %Acc = 100%−%Ins−%Del−%Sub, where
%Ins, %Del and %Sub denote the percentage of insertions, deletions and sub-
stitutions used for aligning the observed and the predicted transcription.3

In agreement with results reported in Johansen (1994), we have observed an
increased performance for CML estimated models when using a forward
or all-paths decoder instead of the best-path Viterbi decoder. In this work
we use an N-best decoder (Schwarz & Chow, 1990) with 10 active hypothe-
ses during decoding. Only the top-scoring hypothesis is used at the end of
decoding. The N-best decoder finds (approximatively) the most probable
labels, which depends on many different paths, whereas the Viterbi algo-
rithm finds only the most probable path. For ML-trained models, the N-best
and Viterbi decoder yield approximately the same accuracy (see Table 2).
As shown by an example in Figure 8, several paths contribute to the optimal
labeling in the CML estimated models, whereas only a few paths contribute
significantly for the ML estimated models.

Table 2 shows that additional incomplete label training of a complete
label trained model does not improve performance for the ML estimated
model. However, for the CML estimation, there is a significant gain in ac-
curacy by incomplete label training. The reason is that the CML criterion is
very sensitive to mislabelings, because it is dominated by training sequences
with an unlikely labeling. Although the phoneme segmentation (complete
labeling) in TIMIT is done by hand, it is imperfect. Furthermore, it is of-
ten impossible—or even meaningless—to assign exact boundaries between
phonemes.

3 The NIST standard scoring package “sclite” version 1.1 is used in all experiments.
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Figure 8: State posterior plots (P(πl= i | x,2)) for baseline and HNN for the test
sentence “But in this one section we welcomed auditors” (TIMIT id: si1361).
States 1–3 belong to the consonant model, 4–6 to the nasal model, 7–9 to the
liquid model, 10–12 to the vowel model, and 13–15 to the silence model. (Top
left) ML-trained baseline, which yield %Acc = 62.5 for this sentence. (Top right)
CML-trained baseline (%Acc = 78.1). (Bottom left) HNN using both match and
transition networks with 10 hidden units and context K = 1 (%Acc = 93.7).
(Bottom right) The observed segmentation.

Table 2: Baseline Recognition Accuracies.

Viterbi N-Best

Complete labels

ML 75.9 76.1
CML 76.6 79.0

Incomplete labels

ML 75.8 75.2
CML 78.4 81.3

Note: The baseline system contains 3856 free
parameters.
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CML gives a big improvement from an accuracy of around 76% for the ML
estimated models to around 81%. Statistical significance is hard to assess,
because of the computational requirements for this task, but in a set of 10
CML training sessions of random initial models, we observed a deviation
of no more than ±0.2% in accuracy. For comparison, a MMI-trained model
with a single diagonal covariance gaussian per state achieved a result of
72.4% accuracy in Johansen and Johnsen (1994).

5.2 HNN Results. For the HNN, two series of experiments were con-
ducted. In the first set of experiments, only a match network is used in each
state, and the transitions are standard HMM transitions. In the second set
of experiments, we also use match networks, but the match distribution
and the standard transitions in the last state of each submodel are replaced
by a transition network. All networks use the same input sl, have the same
number of hidden units, are fully connected, and have sigmoid output func-
tions. This also applies for the transition networks; that is, a softmax output
function is not used for the transition networks.

Although the HNN with match networks and no hidden units has far
fewer parameters than the baseline system, it achieves a comparable per-
formance of 80.8% accuracy using only the current observation xl as input
(K = 0) and 81.7% accuracy for a context of one left and right observation
(K = 1) (see Table 3). No further improvement was observed for larger con-
texts. Note that the match networks without hidden units just implement
linear weighted sums of input features (passed through a sigmoid output
function). For approximately the same number of parameters as used in
the baseline system, the HNN with 10 hidden units and no context (K = 0)
yields 84.0% recognition accuracy. Increasing the context or number of hid-
den units for this model yields a slightly lower accuracy due to overfitting.

In Johansen (1994) a multilayer perceptron was used as a global adaptive
input transformation to a continuous density HMM with a single diagonal
covariance gaussian per state. Using N-best decoding and CML estimation,
a result of 81.3% accuracy was achieved on the broad phoneme class task.

When using a transition network in the last state of each submodel, the
accuracy increases, as shown in Table 3. Thus, for the model with context
K = 1 and no hidden units, an accuracy of 82.3% is obtained compared to
81.7% for the same model with only match networks. The best result on
the five broad class task is an accuracy of 84.4% obtained by the HNN with
context K = 1, match and transition networks and 10 hidden units in all
networks (see Table 3).

6 Conclusion

In this article we described the HNN, which in a very natural way replaces
the probability parameters of an HMM with the output of state-specific
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Table 3: Recognition Accuracies for HNNs.

Context Number of Accuracy
K Parameters

No hidden units

HNN, match networks 0 436 80.8
HNN, match networks 1 1,216 81.7
HNN, match and transition networks 1 2411 82.3

Ten hidden units

HNN, match networks 0 4,246 84.0
HNN, match networks 1 12,046 83.8
HNN, match and transition networks 1 12,191 84.4

Note: “HNN, match networks” are models using only match networks and standard
CHMM transitions, whereas “HNN, match and transition networks” use both match and
transition networks. Decoding is done by N-best.

neural networks. The model is normalized at a global level, which ensures
a proper probabilistic interpretation of the HNN. All the parameters in
the model are trained simultaneously from labeled data using gradient-
descent-based CML estimation. The architecture is very flexible in that all
combinations with standard CHMM probability parameters are possible.
The relation to graphical models was discussed, and it was shown that the
HNN can be viewed as an undirected probabilistic independence network,
where the neural networks provide a compact representation of the clique
functions.

Finally, it was shown that the HNN improves on the results of a speech
recognition problem with a reduced set of phoneme classes. The HNN has
also been applied to the recognition of task-independent isolated words
from the PHONEBOOK database (Riis, 1998b) and preliminary results on
the 39 phoneme TIMIT problem are presented in Riis (1998a).
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