In Proc. Fifth Int. Conf. Intelligent Systems for Molecular Biology

Eds. T. Gaasterland et al., p. 179-186, AAAI Press 1997

Two methods for improving performance of an HMM and their
application for gene finding

Anders Krogh*

Center for Biological Sequence Analysis
Technical University of Denmark
Building 206, 2800 Lyngby, Denmark

and

The Sanger Centre
Wellcome Trust Genome Campus

Hinxton, Cambs, CB10 1SA, UK.

Abstract

A hidden Markov model for gene finding consists of
submodels for coding regions, splice sites, introns, in-
tergenic regions and possibly more. It is described
how to estimate the model as a whole from labeled
sequences instead of estimating the individual parts
independently from subsequences. It is argued that
the standard maximum likelihood estimation criterion
is not optimal for training such a model. Instead of
maximizing the probability of the DNA sequence, one
should maximize the probability of the correct pre-
diction. Such a criterion, called conditional maxi-
mum likelihood, is used for the gene finder ‘HMM-
gene’. A new (approximative) algorithm is described,
which finds the most probable prediction summed over
all paths yielding the same prediction. We show that
these methods contribute significantly to the high per-
formance of HMMgene.

Keywords: Hidden Markov model, gene finding, max-
imum likelihood, statistical sequence analysis.

Introduction

As the genome projects evolve automated annotation
of the DNA sequence becomes increasingly important.
One of the difficult tasks is to reliably identify genes,
in particular in organisms with splicing. Recent suc-
cessful approaches to this problem include GRAIL
(Uberbacher & Mural 1991), NetGene (Brunak, Engel-
brecht, & Knudsen 1991), GenelD (Guigo et al. 1992),
FGENEH (Solovyev, Salamov, & Lawrence 1995), and
many other. Several groups are applying probabilis-
tic modeling using hidden Markov models (HMMs) or
neural networks; examples are GeneParser (Snyder &
Stormo 1995) and Genie (Kulp et al. 1996). The two
central ideas of most of this work is (1) the integration
of several recognition modules into one big model, and

*Please send correspondence to my current address at
Center for Biological Sequence Analysis. Phone: +45 4525
2470. Fax: +45 4593 4808. E-mail: krogh@cbs.dtu.dk

(2) for prediction to find the most probable gene given
the model.

Hidden Markov models are usually being estimated
by maximum likelihood (ML), and this is true also
for the HMM based gene finders reported previously
(Krogh, Mian, & Haussler 1994; Henderson, Salzberg,
& Fasman 1997). The standard ML method optimizes
the probability of the observed sequence, but for pre-
diction, one would rather want to maximize the proba-
bility of the correct prediction. In this paper a method
is described for estimation of a HMM from labeled se-
quences, which maximizes the probability of the cor-
rect labeling, and it is shown that it can substantially
improve the performance of a gene finder. Another
problem with the standard approach to gene finding is
that the prediction is done by finding the most prob-
able state sequence (by the Viterbi algorithm) instead
of the most probable gene prediction. I introduce here
an algorithm, which is an approximation to the latter,
and which always yields a prediction with a probability
at least as high as that of the Viterbi algorithm.

These methods are an integral part of HMMgene,
which is an HMM for gene prediction. HMMgene has
a better performance than almost all other gene finders
on human genes. The present paper focuses on the de-
scription of the methods, and the results of HMMgene
will be used to illustrate the power of these methods,
whereas the details of HMMgene will be described else-
where (Krogh 1997, in preparation).

The CHMM

The gene finding problem is part of a general class of
problems which has a class label associated with each
observation. In gene finding the observations are nu-
cleotides and the classes are for instance coding, intron,
or intergenic; see Figure 1 for an example of a labeled
DNA sequence. Of course, this labeling can be made
more elaborate. For instance, 3’ and 5 untranslated
regions of the mRNA could also be labeled and so could
transcription factors and so on. Here however, only the

AGCGGATCCCCCGGT GGCCTCATGT CGCGCAGT GGAACCGAT CCTCAGCAACGCCAGCAGGCGT CAGAGG
000000000000000000000CCCCCCCCCCCCCCCCCCCCCrrCrrrrrerrreeoerrceceeeceeo

CGGACGCCGCAGCAGCAACCT TCCGGECAAACGGT AACT GCACCGCGGECAGGGACT CGCT GGEGECGCGGEA
CCCCCCCCCCCCCCCCCCCCCCecccceecececea Hhrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrnrel

GCCGAGCCCTCCCCTTCCTTAGGAAGCT TTCGT CCCCCT CCGAAGGT TGGAACGCT CATCCCGAGCCAGA
trerrereererrerrereererrerrerrerrrrerrerrerrrrerrerrrrrrrrrrrrrrrrern

CCGACAAGGCGT ACAGT CTGCAGGCCT CTACGAGCAGCAGGCCAAT TGGCGCTGEGAAAGT CCAATCCT G
trerrereererrerrerrererrerrerrerrrrerrerrerrrrerrrrrrrrrrrrrerrrrrern

GGCCTCTAGCT CCTGAGCGEGACAGGGCCGAGAGEECECT CCCGAGCT TGEECCT GCTGGTGEGT GAGAC
Frerrereererrerrereererrerrerrererrerrerrerrrrerrerrerrrrrrrerrrrrern

CCAGGAGAGAGGCGAGCT AGAGCGGEGEGAGCT CTGAGGACT GATCT TGACT GT CTGCCCCCAGACCATCACGC
Frreerrrerrrrerrreerrreerrrerrreerrrerrrreerrrrrrrrrrrrrrrrn I eeCCCCCCC

ATATCCGCTACAACCCGCT GCAGGAT GAGT GGGT GCTGGT GT CAGCT CACCGCAT GAAGCGGCCCTGGTA

GGGT CAAGT GGAGCCCCAGCT TCTGAAGACAGT GCCCCGCCATGACCCTCTCAACCCTCTGT GTCCTGGG
C000

GCCATCCGAGCCAACGGAGAGGT AAGCCT GTAGAGCCCT GCAT CTGCAGGCTGGGECCACGG
000

Figure 1: A DNA sequence containing one gene. For each nucleotide its label is written below. The coding regions
are labeled ‘C’, the introns ‘I’, and the intergenic regions ‘0’. The shaded areas are the coding regions. (Genbank
sequence HUMGALT54X, Homo sapiens galactose-1-phosphate uridyl transferase (GALT) mutant).

three classes mentioned first will be used. I will use la-
bel ‘C’ for coding, ‘I’ for intron, and ‘0’ for intergenic
as in Figure 1.

The traditional approach to this problem is to sepa-
rately estimate models for sequences representing each
of the classes and later merge them into one big model.
In (Stormo & Haussler 1994), for instance, a general
method is described for estimating relative weights of
the individual fixed models so as to optimize the pre-
diction accuracy. However, in the HMM framework it
is possible to estimate the whole combined model di-
rectly from the labeled sequences if the states of the
model are also labeled. In (Krogh 1994) such a model
was called a class HMM (CHMM) and it was shown
how it is possible to even have a probability distribu-
tion over labels for each state of the model. Here I will
limit myself to one label for each state, which is prob-
ably the most useful approach for problems like gene
finding.

The starting point is a standard HMM which con-
sists of a set of states each with a probability distri-
bution over letters of the alphabet (A, C, G, and T
in this case) and with transition probabilities giving
the probability of one state following another one. In
the CHMM each state is labeled. For a gene finder it
means that some states are labeled ‘C’ for coding, some
are labeled ‘0’ for intergenic, and the rest are labeled
‘I’ for intron.

One can think of an HMM as emitting sequences of
letters. A state emits a letter according to its probabil-
ity distribution over letters. One can then view a state
of a CHMM as ‘emitting’ its class label along with the
letter. Therefore it can emit sequences with associated
labels as the one shown in Figure 1.

To estimate the parameters of a CHMM a set of la-

beled sequences is needed. Let us call a sequence z =
z1,...,zr and the corresponding labelsy = y1, ..., yr.
To estimate the parameters of this model by standard
ML, one needs to maximize the likelihood of the se-
quences with their corresponding labels. If the model
parameters are called ¢, and we assume there is only
one sequence in the training set, then the ML solution
is

oMY = argmax P(x, y|0). (1)
[

The probability P(z,y|f) can be calculated by a triv-
ial modification of the standard forward algorithm
(Rabiner 1989; Krogh 1994), where only valid paths
through the model are allowed. A valid path is one in
which the state labels agree with the observed labels.
For instance, a part of the sequence labeled by ‘C’ for
coding can only match a state also labeled ‘C’. The
same holds for the backward algorithm, and thus the
forward-backward (or Baum-Welch) reestimation pro-
cedure (Rabiner 1989) can be used to maximize (1).

The model obtained in this way is in most cases
identical to a model combined of submodels estimated
from each class independently, which is the usual ap-
proach, and the main advantage is that the combined
model can be estimated in one go from scratch. One
additional advantage is that the transitions between
the submodels are also automatically estimated in the
CHMM. If there are several transitions between sub-
models for the individual classes the estimation of these
is not straightforward when the submodels are trained
independently.

When the CHMM has been estimated from the
training data, a prediction of labels for a sequence
x = x1,...,xr can be done the usual way: First the

most probable state path 7* = =], ... 7],

7" = argmax P(z, 7|0) (2)

is found with the Viterbi algorithm (Rabiner 1989). By
reading off the label of each state in the path, this is
translated to a sequence of labels. Below I will discuss
an alternative to this method.

Conditional Maximum Likelihood

In the ML approach the probability that a submodel
can emit the DNA sequences in a certain class (e.g. ex-
ons) is maximized. Even after maximizing this proba-
bility it may well happen that these sequences have a
higher probability given a model estimated for a differ-
ent class (e.g. introns). ML is not discriminative. The
probability of the observed DNA sequence under the
model is not the relevant quantity for prediction; one
really only cares about getting the predicted labeling
correct. Therefore, maximizing the probability of the
labeling instead seems more appropriate (Krogh 1994).
This is called conditional maximum likelihood (CML)
in (Juang & Rabiner 1991). Instead of (1) the CML

estimate 1s

0°ML = argmax P(y|z, 0). (3)
6
This probability can be rewritten as
P(z,y|0)
P(ylz,0) = ————=. 4

The numerator is the same probability asin (1) and can
be calculated as described above. The denominator
is even simpler: it is the probability of the unlabeled
DNA sequence, i.e., the probability usually calculated
in an HMM disregarding any labeling. This proba-
bility is calculated by the standard forward algorithm
(Rabiner 1989).

The probability P(z,y|0) is a sum over all valid
paths through the model and P(z|f) is the same plus
the probability over all the invalid paths, so P(z,y|0) <
P(xz|0). Therefore, maximizing (4) corresponds to
making P(z,y|f) come as close as possible to P(z|0),
i.e., to minimize the probability of all the invalid paths.

To actually maximize (4) is more tricky than
the maximization of (1), because an expectation-
maximization (EM) algorithm like the forward-
backward algorithm does not exist. In this work the
extended Baum-Welch algorithm (Normandin & Morg-
era 1991) is used. Both this algorithm and various gra-
dient descent algorithms that were tested require some
parameter tuning, as they easily become unstable.

The conditional maximum likelihood method is ob-
viously not limited to HMMs. Indeed it has proven
successful in a neural network/HMM hybrid called a
hidden neural network or HNN (Riis & Krogh 1997).
The difference between this method and the previously
mentioned method of (Stormo & Haussler 1994) is that
the parameters of the submodels are estimated along
with the weights between them.

The most probable labeling

Predicting the labels of an unknown sequence is called
decoding in speech recognition, where almost all the
HMM algorithms originate. The most common decod-
ing algorithm is the Viterbi algorithm, which finds the
most probable path through the model as already de-
scribed. If there are several states with the same label
there are usually many paths that give the same la-
beling. Therefore it would be more natural to sum the
probabilities of all these paths and find the overall most
probable labeling instead. If there are many possible
paths for the same labeling, this is quite different from
the Viterbi decoding.

There is no exact algorithm for finding the most
probable labeling, but here I will present an approxi-
mative algorithm which gives very good results. Tt is
a variant of the N-best algorithm (Schwarz & Chow
1990). A partial hypothesis h; is a labeling of the se-
quence up to nucleotide number ¢ in the sequence. As-
sume the probability of this hypothesis v (h;) is known
for every state k. If the last label (the ith) is ‘C’, this
probability can only be non-zero for states also labeled
by ‘C’, and similar for other labels. With three classes,
as we use here for gene finding, this hypothesis can
spawn three new hypotheses for the next nucleotide
(i + 1) in the sequence: h; with a ‘C’, an ‘T, or a
‘0’ appended. We call these hypotheses h;C', h;I, and
h;0. The probability of these three new hypotheses are
found by propagating the probabilities yx(h;) forward
as in the forward algorithm,

Yi(hiYi) =

Z alek(hi)] bi(ziy1), (5)

k

where the label of state [i1s called Y; and az; is the
probability of a transition from state & to [. The emis-
sion probability of base number i+ 1 in state [is called
bl($i+1)-

In the 1-best algorithm the best partial hypothesis
for each state is kept for position ¢ in the sequence
(‘best’ of course means the one with the highest prob-
ability in that state). These hypotheses are then prop-
agated to the next position 7 4+ 1, and for each state
the best is selected again. This continues to the end of
the sequence, where the best overall hypothesis is the
final answer. In summary the 1-best algorithm works

like this:

1. Propagate the empty hypothesis forward to all states
(i = 1). At this stage there are 3 different hypotheses
‘0’, ‘C’, and T". In state ! the probability is y;(h;) =
agibi(x1), where h; is one if the hypotheses and ag
is the probability of starting in state /.

2. Propagate the hypotheses forward yielding three
new hypotheses for every old one, and a probability
71(hi) given by (5) in each state for these hypotheses.

3. In each state, choose the hypothesis with the highest
probability. Discard all hypotheses that were not

chosen in any state. If you have not reached the end
of the sequence, go to step 2.

4. Sum the probabilities for each hypothesis over the
states and save the one with the highest.

If a model has a one-to-one correspondence between
a path and a labeling, the result of 1-best would be
identical to the result of the Viterbi algorithm. Gener-
ally, the 1-best algorithm will always produce a label-
ing with a probability at least as high as the result of
the Viterbi algorithm, so in this sense it can never be
worse.

The main draw-back of 1-best is that the computa-
tion time is significantly longer than Viterbi. However,
the number of active hypotheses can be reduced in var-
ious ways by discarding ones with a probability less
than a cut-off. An advantage of the algorithm is that
the memory requirement is only weakly dependent on
sequence length; it depends on the number of states in
the model times the number of exons in the hypothe-
ses. This is because there is no back tracking as in the
Viterbi algorithm, and the hypotheses use very little
memory because one just have to store the positions of
the borders between labels. The Viterbi algorithm re-
quires memory proportional to sequence length times
number of states, although there are more memory ef-
ficient implementations which then takes more time.
The low memory requirement is particularly nice for
parsing very long genomic sequence, where the simple
Viterbi algorithm requires megabytes of memory.

The 1-best algorithm will fail to find the correct re-
sult if the best hypothesis does not have the highest
probability in any state of the model for a given po-
sition in the sequence. This seems to be a rare phe-
nomenon in HMMgene. In the algorithm I tried to
keep also the partial hypothesis with the largest prob-
ability summed over all states; but this did not change
the result in a small number of test experiments.

Although I call the algorithm 1-best, it is not identi-
cal to the one described in (Schwarz & Chow 1990). In
speech recognition, one is interested only in the short
sequence of phonemes represented by a speech signal.
For gene parsing it would correspond to collapsing the
labeling of the sequence in Figure 1 to ‘intergenic, cod-
ing, intron, coding, intergenic’ or ‘0OCIC(0’. Therefore,
in the original n-best algorithm the hypotheses are of
this form. The number of hypotheses for each state
can be greater than one, and this can be used when
searching for suboptimal predictions. This will be the
subject of future study.

HMMgene

A CHMM gene finder called HMMgene is currently
being developed. It consists of states modeling coding
regions including a crude length modeling, states mod-
eling splice sites and introns, and states for modeling
intergenic regions including states for the region up-
stream of the start codon and downstream of the stop

codon.

Two very important features of the model may not
be familiar to all readers, even if they know HMMs.
Instead of having the usual ‘Oth order’ emission prob-
ability distribution over letters of the alphabet, I allow
a state to have the emission probability conditioned
on the n previous letters in the sequence, which cor-
responds to an nth order Markov chain. These nth
order states are particularly useful for modeling cod-
ing regions. Here the basic model consists of three
4th order states, which is essentially like the inhomo-
geneous Markov chains used to model coding regions
in GeneMark (Borodovsky & MecIninch 1993). Most
other states in the model are first order, i.e., captur-
ing dinucleotide statistics, except for the state model-
ing internal introns and the one for intergenic regions
which are both 3rd order. Notice that the state se-
quence is still first order, and therefore the high order
states do not change the HMM formalism significantly,
and all the standard algorithms are unchanged.

The second feature that may be unfamiliar is called
tying, which is used extensively in speech recognition.
(The same technique is called ‘weight-sharing’ for neu-
ral networks.) Tying of two states means that the emis-
sion probabilities and/or the transition probabilities
are always identical in the two states. During estima-
tion a group of tied states are updated by the sum of
the changes calculated for the individual states in the
group, so it is like having the same state appearing
several places in the model. This is used for the intron
modeling. In order to incorporate splicing constraints
it is necessary to have three copies of the intron model,
and the states in these three models are tied. It is also
used to model the exon length by having several tied
copies of the basic three states for modeling a codon.

In this work the models were regularized by the
simple pseudocount method (see e.g. (Krogh et al.
1994)). After a few initial experiments these pseudo-
counts were set to 25 for each letter, except in the
high order states for the coding regions where a larger
pseudocount of 250 for each letter was used to avoid
over-fitting. When reestimating an nth order state,
the expected number of each (n + 1)-mer is calculated
to obtain the conditional probabilities. For such states
the regularizer is spread evenly over all (n + 1)-mers,
i.e., the pseudocount for a letter is divided by 4”. In
the beginning of the training a decreasing amount of
noise was added as described in (Krogh et al. 1994)
in an attempt to avoid unfavorable local minima. Be-
cause the models used in this study were of relatively
low complexity, the local minimum problem was not
severe, and models trained on the same data did not
differ much in performance.

To speed up training, the ML estimated model was
used as the initial model for conditional ML. During
the iteration of the extended Baum-Welch algorithm
the model accuracy on the training set was monitored,
and after a maximum number of iterations, the model

with the highest accuracy was chosen. It would prob-
ably be even better to choose the model from some
independent validation set, but it was not tried be-
cause of the limited amount of data. The maximum
number of iterations was 20.

Results

The conditional maximum likelihood estimation
method and the 1-best decoding algorithm were tested
on HMMgene. A dataset collected by David Kulp and
Martin Reese (Kulp et al. 1996; Reese et al. 1997) from
GenBank release 95.0 was used (see also the Web site
http://www-hgc.lbl.gov/pub/genesets.html). It con-
tains 353 human genes with at least one intron. The set
only includes genes with correct start and stop codons
as well as consensus splice sites, and strong homologies
have been weeded out. The tests were done using 10
fold cross validation, i.e., the set was split at random
into 10 subsets of approximately equal size. The model
was estimated from 9 of the subsets and tested on the
last. After testing on all the test sets the numbers were
averaged.

Six numbers were calculated for evaluating perfor-
mance:

The percentage of bases in
coding region that are cor-
rectly predicted as coding
The percentage of bases pre-
dicted as coding that are ac-
tually coding.

The percentage of coding ex-
ons that are correctly predic-
ted.

Exon specificity: The percentage predicted
coding exons that are cor-
rect.

Number of real coding exons
that are not overlapping a
predicted one.

Number of predicted coding
exons that are not overlap-
ping a real one.

Base sensitivity:

Base specificity:

Exon sensitivity:

Missing exons:

Wrong exons:

By a correct exon prediction is meant that the exon
is exactly as labeled in the database, i.e., both splice
sites have to be correctly assigned (or a splice site and
a stop or start correct for initial or terminal exons).

To test the effect of conditional maximum likelihood
and 1-best decoding, I did the experiment in steps.
First a model was estimated in the usual way with
ML and the performance tested using the Viterbi algo-
rithm. Results after 10-fold cross validation are shown
in the first row of Table 1. The 1-best decoding yields
only insignificant (or no) improvements at this stage,
and the results are not shown.

Starting from the ML estimated model training was
continued with the extented Baum-Welch algorithm
as described earlier. The cross validated results us-

ing Viterbi decoding are shown in the second row of
Table 1. A quite significant improvement is seen al-
though the base sensitivity decreases slightly and the
number of missing exons increases. The results for the
same model, but decoded with the 1-best algorithm,
are shown next. An increase in sensitivity and a de-
crease in wrong exons is observed at the expense of a
slightly lower sensitivity and more wrong exons.

Note that a decrease in specificity does not always
mean a worse prediction. For the sake of argument, as-
sume there are 1000 exons in the test set, and that only
one is predicted, and it happens to be correct. Then
the exon specificity is 100%. If however, 1000 are pre-
dicted of which for instance 70% are exactly correct
the specificity is only 70%, even though the prediction
is much better by most other measures. Although less
extreme, the same phenomenon is seen when compar-
ing the performance of 1-best to Viterbi, see Table 2.

Clearly, the main effect of using the 1-best algo-
rithm is that more exons are predicted, balancing
the specificity and the sensitivity better. This is be-
cause the exon length modeling allows several different
paths through the model for the same labeling, and
only when they are summed up will the probability
be higher than the probability of labeling the exon as
an intron. There is still a tendency to under-predict,
i.e., there are more real exons than predicted ones.
This shows up also as a large number of missing ex-
ons compared to the relatively low number of wrong
exons. However, because the data set does not contain
long stretches of DNA with no genes, it is likely that
the number of wrong exons is underestimated and the
specificity overestimated. In other words, it is likely
that more false gene predictions will occur when using
this and other gene finders on newly sequenced anony-
mous DNA.

One of the main problems for HMMgene is that it
does not do a good job on sequences with a low G/C
content, which is a common problem for automated
gene fining methods, see e.g. (Snyder & Stormo 1995).
Therefore the data were split up into four groups with
G/C content of less than 40%, between 40% and 50%,
between 50% and 60%, and more than 60%. The model
was then trained further using these data producing
four new models specialized for these ranges of G/C
content. Although the predictions are still not very
good for low G/C content they do improve, and the
overall results are shown in Table 1. The main problem
seems to be too little data with low G/C content to
reliably estimate a good model.

The final row in Table 1 shows the performance of
Genie (Reese et al. 1997) on the same data for compar-
ison. In Genie (as opposed to HMMgene) the model
is constrained to predicting exactly one complete gene
in each sequence, which of course is unrealistic if gene
finding in anonymous DNA is the goal. However, |
would imagine that the results are not strongly depen-
dent on this fact. Although the number of missing

Performance in % Base Exon

Genie data Sens. | Spec. || Sens. | Spec. | Miss. | Wrong
ML Estimated 81 78 58 65 24 15
CML Estimated 79 95 61 82 27 4
CML with 1-best 82 94 64 79 23 6
G/C adaption 85 93 69 76 17 9
Genie 82 81 65 64 14 21

Table 1: Performance of HMMgene trained by the standard ML method and the conditional ML method described
in this paper (first two rows). The third row shows the performance when using 1-best decoding. The fourth
row are the results obtained when using several models trained for different G/C content. The last row shows the

performance of the Genie gene finder for comparison.

Viterbi 1-best
Number of exons 2107 2107
Number of predicted exons 1588 1711
Correctly predicted exons 1295 1354
Exon sensitivity (%) 61.46 64.26
Exon specificity (%) 81.55 79.14
Missing exons 565 (26.82%) | 491 (23.30%)
Wrong exons 61 (3.84%) | 103 (6.02%)

Table 2: The numbers for calculating the exon sensitivity and specificity for Viterbi decoding and 1-best decoding.
The main difference is that 1-best predicts more exons. This lowers the specificity but increases sensitivity.

exons is lower for Genie, the over-all performance of
HMMgene (even before G/C adaption) is better.

Finally, in Table 3 a comparison to some other gene
finders is shown. For this comparison HMMgene was
trained on the full dataset but tested on the dataset of
vertebrate genes described in (Burset & Guigo 1996).
In the comparison of gene finders in (Burset & Guigo
1996) FGENEH performed the best of gene finders that
did not use homology information. The overall best in
the test was GenelD+ which uses protein homology
information. Genie can also use homology information
(Kulp et al. 1997) and those numbers are also shown.
Surprisingly HMMgene performs essentially as well as
the methods using homology information. However,
caution is needed when interpreting these results, be-
cause the various methods were trained on different
data sets with varying degree of homology with the
Burset/Guigo test set.

I recently became aware of two new similar gene
finders. One called VAIL is HMM based (Henderson,
Salzberg, & Fasman 1997). The main differences with
HMMgene are that VAIL does not use CML estima-
tion, it uses Viterbi for prediction, and it does not use
high order states. The performance of VAIL is not as
high as HMMgene, and I believe that the most im-
portant reason is that the model of coding regions is
simpler. The other method called GENSCAN is a gen-
eralized HMM like Genie, which have very impressive
performance (Burge & Karlin 1997). The Genie data
set was used for training GENSCAN, but it was sup-
plemented by a large number of ¢cDNA sequence for
training the coding region submodels; so the results

are not directly comparable. One of the problems with
HMMgene is the lack of data for estimating the model
for low GC content, and I expect that it can reach
a performance similar to GENSCAN, if more training
data is used.

Conclusion

Two methods are described which can significantly im-
prove recognition accuracy of hidden Markov models,
and results are shown for an HMM based gene finder
for human DNA. The conditional maximum likelihood
(CML) estimation criterion is designed to optimize pre-
diction accuracy, and improves the exon sensitivity and
(in particular) exon specificity. The 1-best algorithm
finds the most probable prediction summed over all
possible paths that gives the same prediction. It is an
alternative to the commonly used Viterbi algorithm,
which only finds the most probable path. It is par-
ticularly useful for CML estimated models with many
possible paths for the same prediction.

These methods are central to the HMM based gene
finder HMMgene, and the results indicate that HMM-
gene is among the best gene finders for human DNA.
One of the advantages of HMMgene is that it is very
easy to train and test, because it is one integrated
model, and therefore it will be easy to extend to other
organisms. HMMgene can be accessed via the World
Wide Web:

http://www.cbs.dtu.dk/services/ HMMgene/

Performance in % Base Exon
Burset/Guigo data Sens. | Spec. || Sens. | Spec. | Miss. | Wrong
Not using homology:
HMMgene 88 94 74 78 13 8
Genie 78 84 61 64 15 16
FGENEH 7 88 61 64 15 12
Using homology:
Genie 95 91 7 74 4 13
GenelD+ 91 91 73 70 7 13

Table 3: A comparison with other gene finders on the Burset/Guigo data. The numbers for FGENEH and GenelD+
are from (Burset & Guigo 1996), and those for Genie are from (Reese et al. 1997; Kulp et al. 1997).

Acknowledgements

Discussions with Sgren Riis, Richard Durbin, Martin
Reese, Sgren Brunak, David Haussler, and Frank Eeck-
man are gratefully acknowledged. Thanks to Martin
Reese and Steven Salzberg for showing me their papers
before publication, and to Steen Knudsen and David
Kulp for comments on the manuscript. David Kulp
and Martin Reese are acknowledged for making their
data available. This work was supported by the Well-
come Trust and the Danish National Research Foun-
dation.

References

Borodovsky, M., and Mclninch, J. 1993. GENMARK:
Parallel gene recognition for both DNA strands. Com-
puters and Chemistry 17(2):123-133.

Brunak, S.; Engelbrecht, J.; and Knudsen, S. 1991.
Prediction of human mRNA donor and acceptor sites
from the DNA sequence. Journal of Molecular Biology
220(1):49-65.

Burge, C.; and Karlin, S. 1997. Prediction of complete
gene structure in human genomic DNA. Journal of
Molecular Biology 268. To appear.

Burset, M., and Guigo, R. 1996. Evaluation of gene
structure prediction programs. Genomics 34(3):353—

367.

Guigo, R.; Knudsen, S.; Drake, N.; and Smith, T.
1992. Prediction of gene structure. Journal of Molec-
ular Biology 226(1):141-57.

Henderson, J.; Salzberg, S.; and Fasman, K. 1997.
Finding genes in DNA with a hidden Markov model.
To appear in Journal of Computational Biology.

Juang, B., and Rabiner, L. 1991. Hidden
Markov models for speech recognition. Technomet-
rics 33(3):251-272.

Krogh, A.; Brown, M.; Mian, I. S.; Sjolander, K.; and
Haussler, D. 1994. Hidden Markov models in com-

putational biology: Applications to protein modeling.
Journal of Molecular Biology 235:1501-1531.

Krogh, A.; Mian, I. S.; and Haussler, D. 1994. A
hidden Markov model that finds genes in e. coli DNA.
Nucleic Acids Research 22:4768-4778.

Krogh, A. 1994. Hidden Markov models for labeled
sequences. In Proceedings of the 12th IAPR Interna-
tional Conference on Pattern Recognition, 140-144.
Los Alamitos, California: IEEE Computer Society
Press.

Kulp, D.; Haussler, D.; Reese, M. G.; and Eeckman,
F. H. 1996. A generalized hidden Markov model for
the recognition of human genes in DNA. In States,
D.; Agarwal, P.; Gaasterland, T.; Hunter, L.; and
Smith, R., eds., Proc. Conf. on Intelligent Systems in
Molecular Biology, 134-142. Menlo Park, CA: AAAI

Press.

Kulp, D.; Haussler, D.; Reese, M. G.; and Eeckman,
F. H. 1997. Integrating database homology in a prob-
abilistic gene structure model. In Altman, R. B.;
Dunker, A. K.; Hunter, L.; and Klein, T. E., eds.,
Proceedings of the Pacific Symposium on Biocomput-
ing. New York: World Scientific.

Normandin, Y., and Morgera, S. D. 1991. An
improved MMIE training algorithm for speaker-
independent, small vocabulary, continuous speech

recognition. In Proc. ICASSP, 537-540.
Rabiner, L. R. 1989. A tutorial on hidden Markov

models and selected applications in speech recogni-

tion. Proc. IEEE T7(2):257-286.

Reese, M. G.; Eeckman, F. H.; Kulp, D.; and Haus-
sler, D. 1997. Improved splice site detection in Ge-
nie. In Waterman, M., ed., Proceedings of the First
Annual International Conference on Computational
Molecular Biology (RECOMB). New York: ACM

Press.

Riis, S., and Krogh, A. 1997. Hidden neural networks:
A framework for HMM /NN hybrids. In Proceedings
of ICASSP’97. New York, USA: IEEE. To appear.

Schwarz, R., and Chow, Y.-L. 1990. The N-best
algorithm: An efficient and exact procedure for find-
ing the N most likely hypotheses. In Proceedings of
ICASSP’90, 81-84.

Snyder, E., and Stormo, G. 1995. Identification of
protein coding regions in genomic DNA. Journal of
Molecular Biology 248(1):1-18.

Solovyev, V.; Salamov, A.; and Lawrence, C. 1995.
Identification of human gene structure using linear
discriminant functions and dynamic programming. In
Rawlings, C.; Clark, D.; Altman, R.; Hunter, L.;
Lengauer, T.; and Wodak, S., eds., Proc. of Third
Int. Conf. on Intelligent Systems for Molecular Bi-
ology, volume 3, 367-375. Menlo Park, CA: AAAI
Press.

Stormo, G. D., and Haussler, D. 1994. Optimally
parsing a sequence into different classes based on mul-
tiple types of evidence. In Proc. of Second Int. Conf.
on Intelligent Systems for Molecular Biology, 369—
375.

Uberbacher, E., and Mural, R. 1991. Locating
protein-coding regions in human DNA sequences by
a multiple sensor - neural network approach. Pro-
ceedings of the National Academy of Sciences of the
United States of America 88(24):11261-11265.

