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Conventional methods for protein structure determination from NMR data rely on the ad hoc combina-
tion of physical forcefields and experimental data, along with heuristic determination of free parameters
such as weight of experimental data relative to a physical forcefield. Recently, a theoretically rigorous
approach was developed which treats structure determination as a problem of Bayesian inference. In this
case, the forcefields are brought in as a prior distribution in the form of a Boltzmann factor. Due to high
computational cost, the approach has been only sparsely applied in practice. Here, we demonstrate that
the use of generative probabilistic models instead of physical forcefields in the Bayesian formalism is not
only conceptually attractive, but also improves precision and efficiency. Our results open new vistas for
the use of sophisticated probabilistic models of biomolecular structure in structure determination from
experimental data.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Current methods for macromolecular structure determination
rely on the seminal idea of hybrid energy minimization introduced
by Jack and Levitt [1]. However, the choice of model parameters,
such as the weight of the experimental data with respect to a phys-
ical force field, is intrinsically problematic in this approach – a fact
that was already recognized in the original study [1]. With a grow-
ing number of sources of experimental data used in protein struc-
ture determination, estimation of weights and other nuisance
parameters is becoming increasingly problematic. Current meth-
odology relies on a more or less arbitrary choice of these parame-
ters, using heuristic approaches [2]. While a persistent concern
towards the applied heuristics has been evident in the literature
[3,2,4], only few quantitative methods have been described to rig-
orously determine these nuisance parameters [4,5]. These meth-
ods, and the underlying Bayesian approach are referred to as
inferential structure determination (ISD).

Bayesian probabilistic inference has previously shown great po-
tential in macromolecular structure determination [2,6]. However,
the scope of the approach has been limited due to excessive com-
putational demands. The current study describes a new approach
ll rights reserved.

elektro.dtu.dk (J. Ferkinghoff-
to inferential structure determination which draws on the use of
generative probabilistic models. Generative probabilistic models,
or GPMs, are probabilistic models that allow sampling. Here, we
demonstrate that the use of GPMs greatly increases efficiency, pre-
cision and scope of rigorous inferential structure determination. As
these GPMs contain information about protein structure, they may
supersede physical forcefields – especially in cases where data is
very sparse.

2. Methods

In the ISD approach, samples are drawn from a joint posterior
distribution over conformational space, X, and model parameter
space, n, given experimental data, D, and prior knowledge, I:

pðX;njD; IÞ / pðDjX;n; IÞpðnjIÞpðXjIÞ:

Consequently, a natural result of posterior sampling is an ensemble
of conformers representing the experimental uncertainty. That is,
the Bayesian formalism accounts for uncertainty and degeneracy,
a feature that is difficult to obtain when using schemes that mini-
mize a hybrid energy consisting of a physical and a data-dependent
term [7,8].

In ISD, a physical forcefield Ephys enters the Bayesian framework
as a conformational prior through a canonical ensemble
pðXjIÞ / e�bEphys , where b = 1/kT, k is Boltzmann’s constant and T is
the temperature [2]. The data enters as a likelihood function,
p(DjX,n, I); its product with the prior distributions, p(njI)p(XjI),
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results in the posterior distribution, p(X,njD, I). When the posterior
is defined in this way, Markov Chain Monte Carlo (MCMC) sam-
pling requires evaluation of both likelihood and priors explicitly,
in each step. This can potentially lead to substantial computational
costs. Conversely, using no, or a uninformative forcefield, leaves a
vast conformational space [9]. Here, we use GPMs of local protein
structure instead of the Boltzmann distribution of a physical force-
field. Consequently, we demonstrate that the explicit evaluation of
the prior can be avoided altogether as the information of the prior
enters the posterior distribution through sampling.

Recently, our group has published several GPMs of protein con-
formational space, describing backbone (TorusDBN) [10,11] and
sidechain (Basilisk) [12] dihedral angles. These models only pro-
vide structural information on a local sequential scale, ideally com-
plementing the long-range information obtained from NMR
nuclear Overhauser enhancements experiments (NOE). As general-
izations of the commonly used fragment- [13] and rotamer-
libraries [14], and related potentials that involve discretization
[15], these GPMs also serve to reduce the complexity of the confor-
mational space. The particular GPMs applied here use continuous
angular probability distributions to avoid the intrinsic limitations
caused by discretization [16]. Furthermore, since these GPMs are
probability distributions, probabilities of arbitrary conformations
can be evaluated, which is not generally possible for fragment-
and rotamer libraries. Consequently, the full posterior probability
can be evaluated explicitly when necessary. Here, we demonstrate
that the use of GPMs as conformational proposal distributions can
dramatically increase convergence in MCMC sampling of protein
conformers from a posterior distribution, in addition to providing
an increase in precision.

The GPMs, TorusDBN and Basilisk, enter the ISD approach as
p(XjI) / p(bja)p(vja), where a denotes amino acid sequence, while
b and v denote backbone and sidechain conformations respec-
tively. Thus, during simulation we alternate between moving in
backbone and sidechain conformational space, conditioned on
amino acid sequence. Following Rieping et al. we assume idealized
Engh–Huber bond lengths [17] and parameterize conformations as
sets of torsion angles [18]. Variations in the bond angles were al-
lowed to facilitate conformational sampling [19].

We used a generalized ensemble Metropolis–Hastings sampling
scheme to draw samples from the posterior distribution. To prior-
itize search in relevant regions of the conformational space we
adopted the 1/k-ensemble implemented using the generalized
multi-histogram equations [20,21]. The 1/k-ensemble allows sam-
pling independently of temperature, thus avoiding nuisance
parameters such as the number of replicas, and their temperature
span. It is, however, important to stress that the statistical informa-
tion provided by this sampling scheme is equivalent to the Replica
Exchange Monte Carlo scheme used in the original ISD study [22].
We employ the log-normal formulation of the NOE data to evaluate
p(Djb,v,n, I), as this provides the least biased formulation of the
likelihood [5].

To assess the performance of TorusDBN and Basilisk as confor-
mational priors, and for comparison to previous results, we created
a set of conformers corresponding to the lowest posterior samples,
using the very sparse (154 constraints) SH3 FYN domain data [2]
and the TRP-Cage data set [28]. As a model baseline, we carried
out the same simulations without the models of local protein
structure. This simple hard-sphere potential corresponds to the
use of a prior distribution reminiscent of that of the original ISD
implementation [2].

2.1. Posterior sampling

As described previously, we sample from the joint posterior dis-
tribution p(X,njD, I) [2]:
pðX;njD; IÞ / r�ðnþ1Þc�1 exp � 1
2r2 v2ðdðv; bÞ; IÞ

� �
pðvjaÞpðbjaÞ;

with the log-normal chi-square: v2ðd;DÞ ¼
Pn

i log2ðcd�a
i =DiÞ;Di are

experimental data and di calculated distances [5]. v and b are the
sidechain and backbone dihedrals, respectively. c and r are ISPA
(isolated spin-pair approximation) equilibration parameter and
experimental uncertainty, respectively. A power a = �1 was used
here as all data were derived distances.

Here, we cannot employ the Gibbs sampling scheme applied in
Rieping et al. [2], due to the inherent absence of an explicit temper-
ature in the 1/k ensemble. This absence of an explicit temperature
makes the implementation of the soft-sphere potential employed
previously difficult without introduction of additional heuristics,
and was therefore avoided [2]. Instead, we here use a Metropo-
lis–Hastings approach, where the involved parameters are updated
one at the time. The 1/k ensemble allows us to sample the confor-
mational- and nuisance-space efficiently.

Low acceptance rates in the nuisance sampling was avoided by
introducing a scheme exploiting the information about the current
state. For the nuisance parameters, n = {c,r}, a log-change is pro-
posed from a log-normal distribution with a standard deviation

rni
¼ 1:0

max @ log pðX;njD;IÞ
@ni

��� ���;1:0� � :

This expression was derived using standard error propagation and
adds a simple regularizer which ensures a maximum standard devi-
ation of 1.0 [23]. As a result, we can draw samples efficiently from
the joint posterior distribution without the temperature dependent
Gibbs sampling scheme. Using the log-normal distribution in this
way we can ensure being in the right domain. We avoid additional
bias from the log-normal distribution in the posterior, by dividing
out the bias in the Monte Carlo acceptance ratio. For completeness,
the analytical expressions of the standard deviations are shown
here:

rr ¼
1:0

max � v2ðdðv;bÞ;IÞ
r2 þ m

��� ���;1:0� �

where m is the number of datapoints, and:

rc ¼
1:0

max
m log c�

Pm
i

ki

r2

����
����;1:0

� � ;

with ki ¼ ln Ii
obs

Ii
calc

corresponding to the log-ratio between the observed

and back-calculated experimental data.
For sampling of the conformational space, a series of MCMC

moves for backbone (pivot, local [19] and semi-local [24]) and
sidechain conformations were employed. All applied moves fulfill
detailed balance, and were chosen with even probability with re-
spect to backbone and sidechain conformational and nuisance
space. TorusDBN was extended to account for small deviations
from ideal cis/trans-angles, using a normal distribution with mean
at the ideal values and a standard deviation of five degrees. In the
baseline model, all angles b, v were sampled uniformly in the
interval [0,2p]. Note that Basilisk was used in a backbone indepen-
dent fashion for simplicity [12]. Samples were accepted or rejected
according to the generalized 1/k ensemble [20]. Convergence was
assessed through inspection of diagnostics provided by Muninn:
the multi-histogram implementation of the generalized ensemble
(http://www.muninn.sourceforge.net/). It is important to stress
that convergence of histograms necessarily reflect convergence of
posterior samples, additional sampling allow generation of more
refined ensembles.

http://www.muninn.sourceforge.net/


Fig. 1. Scatter plots of the RMSD of conformational samples to the crystal structure
of SH3 FYN (PDB:1SHF chain A) versus �logp(X,njD, I) (posterior density) for (a)
TorusDBN and Basilisk and (b) the baseline prior after 400 million MCMC steps.
Samples are from the 1/k ensemble.

Table 1
VADAR and PROCHECK structure quality statistics for the previously published
ensemble (PDB: 1ZBJ) (1ZBJ) [2] and current SH3 FYN (GPMs) ensembles and
reference values presented by VADAR (Ref). /, w core, allowed, generous and outside
denote distinct regions of the Ramachandran plot of decreasing favoredness. x core
denotes the percentage of x-angles in the most favored region (the three other
classes are not shown here). Packing defects, free energy folding, percentage of
residues 95% buried and buried charges denotes the number of packing defects, free
energy of folding and bury ratios for residues and charges, respectively [25].
Percentile reference values were normalized. PROCHECK G-factors reflect average log-
odds of (/,w), (v1,v2), (v1) and overall dihedral angle combinations.

VADAR
Dihedral prior 1ZBJ GPMs Ref

/, w core 68.95 ± 4.19% 88.33 ± 2.85% 91.84%
/, w allowed 27.6 ± 4.12% 9.96 ± 3.17% 7.14%
/, w generous 1.7 ± 1.27% 1.65 ± 1.50% 1.02%
/, w outside 0.0 ± 0.0% 0.05 ± 0.0% 0.0%
x core 100.0 ± 0.0% 91.0 ± 2.17% 97%
x allowed 0.0 ± 0.0% 8.0 ± 2.61% 3%
x generous 0.0 ± 0.0% 1.0 ± 1.49% 0%
Packing defects 11.95 ±2.85 5.95 ± 2.06 4.0
Free energy fold �40.7 ± 1.88 �46.07 ± 2.06 �42.39
Res. 95% buried 2.25 ± 1.22 4.30 ± 1.90 6.0
Buried charges 0.15 ± 0.30 0.30 ± 0.56 0.0

PROCHECK
Dihedral prior 1ZBJ GPMs
G-factor (/,w) �1.41 �0.72
G-factor (v1,v2) �1.82 0.25
G-factor (v1 only) �0.54 0.20
G-factor (overall) �1.43 �0.28
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3. Results

3.1. SH3 FYN

When employing the GPMs, the sampling of the posterior distri-
bution defined by the sparse SH3 FYN data set converges in less
than 36 h of computation time on a single standard CPU core. In
comparison, the previously published ISD ensemble derived from
the same data set took 3 days on a 50 core computer cluster [2].
Even given the increase in average computational power since
2005, this is a substantial increase in the efficiency. We do not ob-
serve convergence within the same simulation time when applying
the baseline model. This illustrates clearly how the GPMs increase
efficiency of posterior sampling.
Fig. 2. Illustration of 20 of the samples with the highest posterior probability using
3.12 ± 0.24 Å), after 400 million MCMC steps. Conformations are aligned to PDB: 1SHF
(DeLano Scientific LLC).
Performing posterior sampling with the baseline prior, gives
rise to two distinct conformational basins (Fig. 1b). There is an ex-
cited basin corresponding to the mirror image of the native basin.
The local geometry of this basin is highly unfavorable. The second
basin corresponds to the correct, native fold, observed in the crys-
tal structure. The latter of the two basins is the only one observed
when using the informative GPMs as conformational priors
(Fig. 1a). Evidently, the experimental data likelihood in conjunction
with the baseline prior only modestly distinguishes between the
two folds, resulting in slow convergence due to an excessive con-
formational multiplicity. The basin with the correct fold is not
thoroughly explored within the given time frame, resulting in rel-
atively inaccurate structures among the 20 highest posterior con-
former ensemble (Fig. 2b). In contrast, the ensembles obtained
within the same simulation time using the TorusDBN and Basilisk
priors accurately capture the native state (Fig. 2a). This result
illustrates the importance of prior information to resolve
degeneracies in sparse experimental data. While avoidance of poor
(a) TorusDBN and Basilisk (RMSD: 1.74 ± 0.17Å) or (b) the baseline prior (RMSD:
chain A (shown in a black cartoon representation). Figure prepared using PyMOL
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stereochemistry has been pointed out previously as a feature of the
ISD approach [2], degeneracy due to poor local structure has re-
mained unaddressed.

The mean heavy-atom (Ca, C and N) root mean square deviation
(RMSD) to the crystal structure from the 20 highest posterior prob-
ability structures (see Fig. 2) is comparable to the previously pub-
lished ISD ensemble (1.84 ± 0.20 Å, PDB: 1ZBJ). However, statistics
Fig. 3. Scatter plots of RMSD of conformational samples to the previously published NM
TorusDBN and Basilisk and (b) baseline prior after 50 million MCMC steps; (c) baseline

Fig. 4. Illustration of 20 of the samples with the highest posterior probability using
1.41 ± 0.39 Å), after 50 million MCMC samples. Conformations are aligned to PDB: 1L2Y
Scientific LLC).
derived from structure validation server VADAR [25], WHATIF [26]
and PROCHECK [27] were vastly improved (see Table 1 and Supple-
mentary material) with respect to both packing quality and local
structure. Importantly, clustering of (/,w)-angle pairs in less favor-
able regions of the Ramachandran space is reduced dramatically
(see SI). Other structure quality indicators such as number of bur-
ied charges remain unchanged. While the improvement in local
R structure of TRP-Cage (PDB:1L2Y) versus �logp(X,njD, I) (posterior density) for (a)
prior after 500 million MCMC steps. Samples are from the 1/k ensemble.

(a) TorusDBN and Basilisk (RMSD: 0.63 ± 0.12 Å) or (b) baseline prior (RMSD:
(shown in a black cartoon representation). Figure prepared using PyMOL (DeLano
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structure is an expected consequence of the information contained
in TorusDBN and Basilisk, non-local structure quality parameters
such as packing defects hint increase in accuracy. The nuisance
parameters r, c were estimated to be 0.11 ± 0.01 and 1.00 ± 0.01,
respectively. These values deviate somewhat from the estimates
obtained previously. The discrepancy may be linked to a different
conformational prior distribution [2].

3.2. TRP-cage

In addition to increasing efficiency and precision, GPMs can ac-
count for the information derived from ambiguous NOE con-
straints. We demonstrate this point on the TRP-cage data set
[28]. Of the reported 169 restraints, 37 involve pseudo atoms,
which strictly speaking yields them ambiguous. In these particular
calculations, the restraints were therefore not included. The result-
ing set of unambiguous NOE restraints are insufficiently informa-
tive to distinguish native-like structures from conformers with
an RMSD of up to 3 Å from the previously published NMR struc-
ture. However, when we use the GPMs as structural priors, we ob-
tain an ensemble of high resemblance with the previously
published structure.

The simulations of TRP-cage were performed identically to
those of SH3 FYN using 50 million MCMC steps. Both simulations
complete within a few hours (see Fig. 3a and b). The pattern ob-
served for SH3 FYN emerges again: when using GPMs convergence
was reached within the simulation time, whereas convergence was
not reached using the baseline model. Extending the simulation
time with the baseline model to 500 million MCMC steps results
in convergence (Fig. 3c). However, the resulting 20 highest poster-
ior ensemble is of significantly lower quality (RMSD: 1.24 ± 0.39 Å)
than the ensemble obtained using the GPMs running for 50 million
MCMC steps, Fig. 4a. With these results we again demonstrate how
efficiency is gained when employing GPMs in the ISD approach. In
addition the results illustrate, how the unambiguous constraints
[28] can be complemented by the local information contained in
the GPMs.
4. Conclusions

In both examples presented here, the difference in accuracy of
the selected ensembles is modest, with mean RMSD differences
of at most 1 Å. However, the highest probability (or lowest energy)
criterion for selection of conformation for these ensembles may
not only underestimate the spread of the ensemble [29,30], but
also ignore severe degeneracies (see Figs. 1 and 3). This points to
the importance of using appropriate prior information when ana-
lyzing sparse data and suggests extra caution be taken when
selecting these ensembles.

This communication describes how generative probabilistic
models can be applied to significantly increase efficiency and pre-
cision of inferential structure determination. As a natural exten-
sion, we propose the development of more specialized GPMs,
drawing on additional prior information such as protein family
membership or chemical shifts. Such models would presumably
resolve degeneracies to an even greater extent, further increasing
the scope, efficiency and precision of the inferential structure
determination approach.
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