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ABSTRACT The concept of amino acid solvent
exposure is crucial for understanding and predict-
ing various aspects of protein structure and func-
tion. The traditional measures of solvent exposure
however suffer from various shortcomings, like for
example the inability to distinguish exposed, partly
exposed, buried, and deeply buried residues. This
article introduces a new measure of solvent expo-
sure called Half-Sphere Exposure that addresses
many of the shortcomings of other methods. The
new measure outperforms other measures with re-
spect to correlation with protein stability, conserva-
tion among fold homologs, amino acid-type depen-
dency and interpretation. The measure consists of
the number of C� atoms in two half spheres around
a residue’s C� atom. Conceptually, one of the half
spheres corresponds to the side chain’s neighbor-
hood, the other half sphere being in the opposite
direction. We show here that the two half spheres
correspond to two regions around an amino acid
that are surprisingly distinct in terms of geometry
and energy. This aspect of protein structure intro-
duced here forms the basis of the Half-Sphere Expo-
sure measure. The results strongly suggest that in
many respects, a 2D measure is inherently much
better suited to describe solvent exposure than the
traditional 1D measures. Importantly, Half-Sphere
Exposure can be calculated from the C� atom coordi-
nates only, which abolishes the need for a full-atom
model to calculate solvent exposure. Hence, the
measure can be used in protein structure prediction
methods that are based on various simplified mod-
els. Half-Sphere Exposure has great potential for
use in protein structure prediction and analysis.
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INTRODUCTION

The concept of amino acid solvent exposure plays a
crucial role in understanding, analyzing and predicting
protein structure, folding, function and interactions.1–10

For this reason, a good measure of solvent exposure is of
enormous importance. Here, we analyze strengths and
weaknesses of some of the most used solvent-exposure
measures (accessible surface area, coordination number,

residue depth), and subsequently introduce and analyze a
new 2D measure that efficiently addresses many concep-
tual and practical problems associated with the currently
used approaches. We justify the new measure by showing
that an amino acid’s neighborhood in a protein can be
subdivided in two distinct regions with different properties
in terms of geometry and energy.

The solvent-accessible surface area (ASA), introduced in
1971 by Lee and Richards11 and subsequently refined by
Greer12 and Connolly,13 is undoubtedly the most widely
used approach to measure solvent exposure today. The
ASA of a given residue is calculated as the surface that is
accessible to a ball with a certain radius (typically 1.4 or
1.5 Å). New methods offer important speed improvements
over the classic Connolly algorithm,14 but typically the
ASA method is too slow for use in many applications
without heuristics.6,15,16

In order to compare the solvent exposure of residues of
different size (for example Leu and Met) the relative
solvent accessible surface area (rASA) is often used. This is
simply the ASA of a residue divided by the maximum ASA
for that residue type.17 In practice, comparison of rASA
values is still difficult for residues of very different size (for
example, Arg and Gly).

A well-known limitation of ASA is that it does not
provide any information for completely buried residues: it
is impossible to distinguish a deeply buried residue from a
residue buried just below the surface.

One solution for this problem is using the distance to the
solvent accessible surface, or, in other words, the depth, as
a way to measure solvent exposure.18–20 Atom depth is
defined as the distance between a given atom and the
nearest point on the solvent-accessible surface. Residue
depth (RD) is the average atom depth of a residue’s atoms.
Residue depth has some attractive features, but we show
here that RD is not a sensitive measure with respect to
partly buried residues, this in contrast to the rASA. In
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addition, it remains difficult to compare RD values for
residues of different size. Since calculating RD implies
calculating the solvent accessible surface, the method
suffers from at least the same computational burden as the
ASA/rASA method.

A third, widely used way to measure solvent exposure is
the coordination number (CN). 2,21 This is simply the
number of C� atoms within a sphere around the C� atom
of a residue. The advantages of this measure are that it is
easy to implement, fast to compute, and conceptually
simple to interpret. Moreover, contrary to RD and ASA, a
full-atom model of a protein is not needed. For these
reasons, structure prediction methods that make use of
simplified models (typically C� atoms only8) often model
solvent exposure using the CN. For example, CN is the
method of choice for the successful ROSETTA ab initio
structure prediction method.2 As can be expected, the CN
provides only a crude, rather insensitive description of a
residue’s solvent exposure as compared to rASA or RD. On
the other hand, CN values can be directly compared for
residues of different sizes, since it essentially measures a
residue’s local environment.

In addition to the issues mentioned above, some addi-
tional factors are important. Solvent exposure, as for
example measured by RD18 and ASA,22 is expected to be
correlated with the stability of mutants. Also, a measure of
solvent exposure is expected to be reasonably conserved
among proteins with similar folds, which is important for
its potential use in solvent-exposure prediction meth-
ods.17,23

We address the following two questions: how to con-
struct a measure that combines the best features of each of
the above mentioned solvent-exposure measures, and,
what view of solvent exposure does such a superior mea-
sure offer? Ideally, we would like to have a measure that:

● Is easy to implement and speed efficient.
● Does not require a full atom model.
● Distinguishes shallowly and deeply buried residues

well.
● Distinguishes buried, partially buried and exposed resi-

dues well.
● Allows easy comparison of solvent exposure, regardless

of residue size.
● Correlates reasonably well with the stability of mu-

tants.
● Is reasonably well conserved for members of a given

fold.

In this article we introduce Half-Sphere Exposure (HSE),
a 2D measure of a residue’s solvent exposure. This mea-
sure is nearly as easy to compute as the CN, but outper-
forms the classic ASA and RD measures in many respects
(for example conservation, correlation with stability of
mutants, sensitivity, dependence on a full atom model).
We provide two, in essence equivalent ways to compute
HSE, depending on whether information is available about
C� and C� positions (HSE�) or only about the C� positions
(HSE�).

METHODS
Database Construction

For the construction of a representative and non-
redundant set of crystal structures we used the PFam
database (http://pfam.wustl.edu/).24 All PFam protein fami-
lies with representatives in the PDB were initially se-
lected. Since many PFam families have more than one
representative in the PDB database, we used a method to
select a “best” representative. This was done using the
PDBSelect database,25 which ranks all PDB files accord-
ing to a set of quality parameters (file pdb_select.
2002_Apr.90 from http://www.cmbi.kun.nl/gv/pdbsel/). For
each PFam family, the crystal structure (NMR structures
were not considered) with the highest PDBSelect score
was selected as representative, and the relevant residues
were written out to a separate PDB file, discarding hydro-
gen atoms, waters, and ligands. In total, 144,258 residues
were used from 985 structures (see the section “Supplemen-
tary Data“ below).

For the evaluation of conservation, the SABmark 1.63
Twilight Zone database was used (http://bioinformatics.
vub.ac.be/databases/databases.html).26 This database con-
sists of aligned structures falling in 236 folds, where all
aligned sequence pairs have a BLAST E-value of at least 1.
For each of the fold groups, one pair of aligned representa-
tive structures was chosen randomly. In total, 230 pairs
were used (see the section “Supplementary Data” below).

Calculation of Residue Depth and Accessible
Surface Area

Solvent accessible surface area (ASA, in Å2) was calcu-
lated using the program DSSP.27 The relative accessible
surface area (rASA), i.e., the ASA divided by the maximum
ASA of a residue of that type, was calculated using the
values given by Rost and Sander.17 For the calculation of
residue depth (RD) and C� atom depth (RD�),18–20 the
solvent-accessible surface of a protein was determined
with the program MSMS.14 The program was run with
default atom radius parameters and a sphere radius of 1.5
Å (the MSMS default radius). MSMS writes out a list of
vertices that represent the solvent-accessible surface. Atom
depth was then calculated as the distance between the
atom and its closest vertex. Residue depth was calculated
as the average depth of a residue’s atoms, hydrogen atoms
excluded.

Calculation of HSE� and HSE�

The overall computation of the Half-Sphere Exposure
(HSE) measures is explained in the “Results and Discus-
sion” section below. Coordination number (CN) and HSE
were calculated using our program hsexpo (see section on
Implementation below). For the calculation of these mea-
sures, a sphere radius of 13 Å was used. The hsexpo
program calculates the HSE values of a residue by first
finding all C� atoms within 13 Å of the residue’s C� atom,
and then applying a specific rotation to these atoms. The
rotation is chosen so that it aligns the C�-C� (for HSE�) or
C�-pseudo C� (for HSE�) vector with the Z-axis. The
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HSEu and HSEd values are the number of atoms with
strictly positive or negative Z-coordinates, respectively.

Thermodynamic Data

The Protherm database28 provided ��G values of Val/Ile/
Leu to Ala point mutants, where ��G is defined as the free
energy of unfolding obtained with the equation ��G �
�Tm�S in the case of thermal denaturation. All mutations
for which data was available on PDB structure identifier,
publication reference, mutation and ��G were used. If
multiple ��G values occurred for the same residue, we
picked the value corresponding to the most recent refer-
ence. In total, the dataset contained 91 point mutants. For
a list of the mutants used and their references see the
section “Supplementary Data” below.

Gnuplot’s fit command produced the linear least-
squares fit to the thermodynamic data in Figure 12. �ASA
was calculated by subtracting the ASA of a residue from
the maximum ASA for that residue type.17

Implementation

We implemented a program (hsexpo) and library mod-
ule (Bio.PDB.HSExposure) to calculate Half-Sphere Ex-
posure as part of the Biopython toolkit (http://www.biopy-
thon.org),29 a set of freely available (under the Biopython
license) python modules for bioinformatics.The program is
based on Biopython’s structural bioinformatics library
module Bio.PDB.30 The hsexpo program is found in
Scripts/Structure.

The hsexpo program calculates HSE (� and �), CN, RD,
and RD� for all amino acid residues in a PDB file. For the
residue depth calculations the MSMS14 program needs to
be installed. In addition, hsexpo also provides an interface
to the DSSP27 program. Optionally, the program writes
out a PDB file with the calculated solvent exposure placed
in the file’s temperature factor records for easy visualiza-
tion (for example in PyMol, http://pymol.sourceforge.net/).

Supplementary Data

PDB files of the structure of FRIL31,32 are available,
each with one of the discussed solvent-exposure measures
(see the section “Sensitivity” below) in the temperature
factor field of the atom record. The files and their corre-
sponding solvent-exposure measures are:

● FRIL_CN.pdb: CN
● FRIL_DSSPa.pdb: DSSPa
● FRIL_DSSPr.pdb: DSSPr
● FRIL_HSEau.pdb: HSE�u
● FRIL_HSEbu.pdb: HSE�u
● FRIL_HSEad.pdb: HSE�d
● FRIL_HSEbd.pdb: HSE�d
● FRIL_RDa.pdb: RD�,
● FRIL_RD.pdb: RD

The file structures.txt contains a list of PDB files and
corresponding chain sections that were used to calculate
the various histograms and statistics. The file sab_pairs.
txt contains a list of structure pairs from the SABmark 1.63

Twilight Zone database26 that were used in the section
“Conservation” below. The file thermo.pdf contains the list
of point mutants and their references that were used in the
section “Correlation with the Stability of Mutants” below.

RESULTS AND DISCUSSION
The HSE� Measure

In this section, we explain the calculation of the HSE
measure from a full atom model, or from a model for
which at least the C� and C� positions are known. We
call this variant of the HSE measure HSE�, because it
relies on the presence of both C� and C� positions. In the
next section, we will describe how to proceed in case only
C� positions are available (for example, in the case of
structure prediction using C�-only models or a low-
resolution structure).

The HSE� calculation is outlined in Figure 1 (top). The
first step in the calculation identifies all C� atoms within a
sphere of a certain radius around the residue’s C�. The
second step constructs a plane that is perpendicular to the
C�-C� vector and runs through the residue’s C� atom.
This plane divides the sphere in two equal halves. These
halves are labeled “up” in the direction of the C�-C�
vector, and “down” in the opposite direction, as indicated
in Figure 1. The two dimensional HSE� measure consists

Fig. 1. Computation of HSE� (top) and HSE� (bottom). The dotted
line indicates the position of the plane that divides the sphere with radius
R around the C� atom. The thick black lines represent a part of the C�
trace of the protein.
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of the number of C� atoms in the upper (HSE�u) and lower
half sphere (HSE�d). For example, the HSE� measure of
the residue in Figure 1 is (3, 5).

In the case of Gly, which obviously lacks a C� atom, we
construct a pseudo-C� atom by rotating the N atom over
�120° along the C�-C axis.

The choice of the sphere radius is a compromise between
two demands. A radius that is too small misses residue
pairs that are obviously shielding each other from the
solvent. A radius that is too large includes irrelevant
residue pairs. Based on visual inspection of protein struc-
tures, 13 Å is a good compromise, and all results described
in this article were obtained using this radius. For use of
the measure in solvent-exposure prediction, a radius could
be selected that optimizes the predictability of the mea-
sure.33

We calculated histograms for HSE�u and HSE�d from a
set of 985 structures, each representing a protein family
(see Methods). The histograms (Fig. 2) show very different
distributions, indicating that the described division of a
residue’s spherical neighborhood indeed captures regions
with different properties.

The CN is simply the sum of the HSE�u and HSE�d
pair. The histogram of the CN (Fig. 3), is thus the result of
the sum of two very different distributions.

The HSE� measure can be interpreted in the following
way: HSE�u expresses the degree of solvent exposure in
the direction of a residue’s side chain, while HSE�d gives
information about the degree of solvent exposure in the
opposite direction. The latter direction corresponds to the
direction in which the main chain atoms of a residue are
less shielded from the solvent by the residue’s side chain
atoms.

The HSE� Measure

The calculation of HSE� requires a full atom model, or
at least a model for which the coordinates of the C� atoms
and the directions of C�-C� vectors are known. Hence, the
measure cannot be calculated directly from a C�-only
model.

Fortunately, it is also possible to derive the general
direction of the side chain from the C� coordinates only.
We call this C�-only version of the HSE measure HSE�.
The calculation of HSE� is based on the fact that the
approximate direction of the side chain can be inferred
from the C� coordinates, as suggested by Raghunathan
and Jernigan.34 Figure 1 (bottom) illustrates the calcula-
tion of HSE�.

The only difference with the calculation of HSE� is the
use of a pseudo-C� (pC�) atom instead of the C� atom. The
pC� atom position is calculated using the coordinates of
the C� atom of the considered residue (C�0), and the C�
coordinates of the preceding (C��1) and following (C��1)
residues. The C�-pC� vector, which approximates the
C�-C� vector, is calculated by adding the C��1-C�0 and
C��1-C�0 vectors.

To assess the difference in orientation between the
C�-pC� and C�-C� vectors, we calculated the histogram of
the angle between the two vectors for all residues, exclud-
ing Gly residues (see Fig. 4).

The histogram shows two clear peaks: the left peak is
mainly due due to residues in �-sheets, the right peak to
residues in �-helices. The histogram shows that the angle
between the two vectors is below 55° for the great majority
of residues. Hence, the C�-pC� and C�-C� vectors coincide
quite well and can thus be used to obtain similar estimates
of the general position of the side chain.

Fig. 2. Histograms for HSE�u, HSE�d, HSE�u and HSE�d. The bin
width is 2. The start of each bin is indicated on the x-axis.

Fig. 3. Histogram for the CN measure. The bin width is 2. The start of
the bins is indicated on the x-axis. Only one in two bins is labeled for
clarity.

Fig. 4. Histogram of the angle between the pC�-C� and the C�-C�
vectors for all non-Gly residues. The bin width is 5°. The center of each bin
is indicated on the x-axis.
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The HSE� and HSE� histograms (Fig. 2) are quite
similar, with the exception of a peak for HSE�u � 0 that is
absent for HSE�u. Apparently, the C�-pC� vector more
often points in a direction with a near-zero C� count than
the C�-C� vector. As is the case for HSE�, the CN is
obtained as the sum of HSE�u and HSE�d. Both HSE�
and HSE� can be efficiently implemented using elemen-
tary vector and matrix computations (see the sections
“Calculation of HSE� and HSE�” and “Implementation,”
above).

Comparison With Other Solvent-Exposure
Measures

We constructed histograms for ASA, rASA, RD, and the
atom depth of the C� atom (called RD�) for the same
residues as in the section “The HSE� Measure” above in
order to compare them with the HSE� and HSE� histo-
grams. In addition, we also determined the correlation
between the various solvent-exposure measures. In this
and the following sections, we use DSSPa and DSSPr to
refer to the ASA and rASA values as calculated by DSSP.27

Both the DSSPr/DSSPa (Fig. 5) and RD/RD� (Fig. 6)
histograms show a distinct peak: for DSSPa and DSSPr at
minimum solvent exposure, and for RD and RD� at
maximum solvent exposure. Strikingly, RD/RD� and ASA/
rASA give two different views of solvent exposure: accord-
ing to the former most residues are exposed, while to the
latter most residues are buried! The HSE measures give a
more balanced picture, with only a relatively small peak
on the exposed side for HSE�u (Fig. 2).

To obtain an idea of the interdependencies of the various
measures, we calculated the correlation coefficient be-
tween all measure pairs (Table I). HSE� and HSE� are
strongly correlated, which is expected since HSE� is
meant as an approximation of HSE�.

More surprising is the lack of correlation between HSEd
and HSEu (for both HSE� and HSE�), meaning that the
number of atoms in the upper half-sphere is uncorrelated
with the number of atoms in the lower half-sphere.

As expected, RD and DSSPa are most strongly corre-
lated with RD� and DSSPr, respectively. Of all other
measures, HSE�u and HSE�u show the best correlation
with DSSPr. Similarly, HSE�u, HSE�u and CN (which is
simply the sum of HSEu and HSEd) show the best
correlation with RD.

Hence, based on these correlations, one might hope that
the HSE measure indeed combines the best features of
both RD and rASA. In the next sections, we will show that
this is indeed to a great extent the case.

Sensitivity

Here we compare the sensitivity of the various mea-
sures. By “sensitivity,” we mean the capability of measur-
ing a wide range of solvent-exposure conditions (i.e. fully
buried, side chain exposed,. . .) in a meaningful and infor-
mative way.

In order to illustrate the properties of HSE compared to
CN, DSSPr and RD, we calculated these four measures for
all residues of a monomer of FRIL (pdb identifier 1QMO), a
sugar-binding protein from the legume lectin family.31,32

The FRIL monomer is a �-sandwich consisting of three
layers: an exposed front �-sheet, a solvent-shielded back
�-sheet, and a layer of loops that pack against the back
�-sheet.

Figures 7 and 8 show the results as color-coded cartoon
representations of the FRIL structure (PDB files of the
FRIL monomer with the calculated solvent-exposure mea-
sures in the temperature factor field are available; see the
section “Supplementary Data” above).

The HSE�u measure (Fig. 7, top) readily distinguishes
the residues with exposed and buried side chains in the
front �-sheet. In addition, it also identifies residues in the
back �-sheet whose side chains are deeply buried.

The HSE�d measure (Fig. 7, middle) provides informa-
tion that is complementary to HSE�u. For residues in the
front �-sheet with their side chains towards the solvent,
the HSE�d values are high (main chain buried), while the
HSE�u values are low (side chain exposed). Residues in
the front sheet with their side chains pointing towards the
hydrophobic core have high HSE�u (side chain buried) and
low HSE�d values (main chain exposed). The residues in
the fully buried back �-sheet have high HSE�u and
HSE�d values (fully buried).

The CN measure (Fig. 7, bottom) distinguishes readily
between deeply buried, intermediate, and exposed resi-
dues, but does not capture the characteristic pattern of
alternating buried/exposed positions in the solvent ex-
posed front �-sheet. The CN measure is essentially indepen-
dent of the side-chain orientation: the number of C� atoms

Fig. 5. Histograms of the DSSPa (left) and DSSPr (right) values. The
bin widths are 6 for DSSPa and 2.5 for DSSPr. The center of each bin is
indicated on the x-axis.

Fig. 6. Histograms of the RD (left) and RD� (right) values. The bin
widths are 0.25 in both cases. The center of each bin is indicated on the
x-axis.
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within a sphere is not sufficient to distinguish the buried
from the exposed residues in a �-sheet.

The RD measure (Fig. 8, top) clearly does not capture
this exposed/buried pattern either, since residues in the
front �-sheet mostly show up as exposed. On the other
hand, RD readily identifies deeply buried residues, simi-
larly to the CN measure. This is expected, since recogniz-
ing deeply buried residues was one of the original goals of
RD.

The DSSPr measure (Fig. 8, bottom) is much better at
identifying the buried/exposed pattern in the front �-sheet.
However, DSSPr does not distinguish shallowly from
deeply buried residues. The buried residues in the front
�-sheet, which are close to the surface, have the same

value as the deeply buried residues in the solvent shielded
back �-sheet.

It is clear that the conclusions from the inspections of
the histograms of HSE, ASA, and RD are confirmed in
Figure 8: according to the RD measure most residues are
exposed, while according to the DSSPr measure most
residues are buried. The HSE� measure (Fig. 7, top and
middle) shows a more balanced picture, without overem-
phasizing exposure or burial.

Unlike any of the other solvent-exposure measures,
HSE� adopts meaningful and informative values for a
wide range of solvent-exposure conditions. In this re-
spect, its information content combines that of CN, RD,
and ASA. The conclusions for the HSE� measure are
essentially identical (see the section “Supplementary
Data” above).

Amino Acid Dependency

One of the advantages of the HSE measure is that it
is easier to compare HSE values for amino acids of
different size in a relevant way. This is because HSE,

TABLE I. Correlation Coefficients Between the Various Exposure Measures

HSE�u HSE�u HSE�d HSE�d CN DSSPa DSSPr RD RD�

HSE�u 1.00 0.88 0.03 0.22 0.82 �0.75 �0.82 0.64 0.59
HSE�u 1.00 0.15 0.03 0.80 �0.75 �0.82 0.63 0.53
HSE�d 1.00 0.79 0.59 �0.14 �0.17 0.32 0.32
HSE�d 1.00 0.63 �0.17 �0.20 0.34 0.40
CN 1.00 �0.68 �0.76 0.70 0.66
DSSPa 1.00 0.93 �0.54 �0.47
DSSPr 1.00 �0.60 �0.52
RD 1.00 0.94
RD� 1.00

Fig. 7. Solvent exposure of FRIL’s �-sheets as measured by HSE�u
(top), HSE�d (middle) and CN (bottom). The left view shows the front
sheet, and the right view shows the back sheet and the loop layer on top of
it. The residue’s colors vary from red (buried) over yellow and green to
blue (exposed). The labels on the residues represent the actual values of
the measures. The labels “N” and “C” indicate the N- and C-terminus.
Figures 7 and 8 were made with PyMol (http://pymol.sourceforge.net/).

Fig. 8. Solvent exposure of FRIL’s �-sheets as measured by RD (top)
and percentage buried surface (1-DSSPr, bottom). The labels on the
residues represent the actual values of the measures. In the case of RD,
we used 10 � RD rounded to the closest integer. The unlabeled residues
of the back sheet (right) in the bottom figure are all completely buried
according to DSSP (1-DSSPr � 97%). Other details as in Figure 7. [Color
figure can be viewed in the online issue, which is available at www.inter-
science.wiley.com.]
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like the CN measure, describes a residue’s environment,
rather than a quantity that is related to the residue’s
size (as in the case of RD and ASA based measures). In
this section, we compare the HSE distributions for the
20 amino acids.

For the calculation of the HSE� and HSE� histograms
for the various amino acids (Figs. 9–11), we used the same
dataset as in the section “The HSE� Measure” above.
Figure 9 shows the histograms of the HSE� and HSE�
values for all residues.

The HSE� and HSE� histograms of the aliphatic residues
(Ala, Ile, Leu, Val; Figs. 10—11, top row) point out an
interesting difference between Ala and the others. As ex-
pected, Leu and Ile produce very similar histograms, with a

Fig. 9. Two-dimensional histograms of HSE� (left) and HSE� (right)
values for all residues. In both cases, HSEu is along the x-axis and HSEd
is along the y-axis. The values of the color legend to the right refer to the
percentage of residues per bin. The bin width is two. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.
com.]

Fig. 10. Two-dimensional histograms of HSE� for all 20 amino acids. The number of residues used in the
construction of the histogram is shown in parentheses at the top. Other details as in Figure 9.
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preference for high values of HSEu. On the other hand, Ala
has access to a much broader range of HSEu values, in
contrast to Val, Ile and Leu. Hence, it is quite clear that Ala
stands apart from the other aliphatic residues. Another
striking observation is that Ala’s histogram strongly re-
sembles the overall histogram (Fig. 9). In this view, Ala
seems to be the amino acid with “average” behavior with
respect to solvent exposure as measured by HSE�.

The HSE� and HSE� histograms of the aromatic resi-
dues and His (Figs. 10–11, second row) clearly show that
His stands apart from Phe, Trp and Tyr. His has a clear
preference for lower HSEu values, but also has access to
higher HSEu values. His is thus confirmed as an amino
acid with a dual hydrophilic/hydrophobic character.

The hydrophilic residues have very similar histograms
(Figs. 10–11, third and fourth row). They have a clear
preference for low HSEu values, and adopt a more narrow
range of HSEd values than the hydrophobic residues.

Gly and Pro both clearly emerge as exposed residues
(Figs. 10–11, bottom row), in tune with the fact that they
often appear in exposed coil regions. Gly and Pro prefer
lower HSE�u values than the classical hydrophylic resi-
dues, while the histograms of Gly, Pro, and the hydro-
phylic residues are very similar for HSE�.

Cys prefers high HSEu values, combined with a wide
range of HSEd values (Figs. 10 –11, bottom row). Met
can adopt a range of HSEu and HSEd values. Overall
the histograms of Cys and especially Met are substan-

Fig. 11. Two-dimensional histograms of HSE� for all 20 amino acids. Details as in Figure 10. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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tially different from those of the other hydrophobic
amino acids.

Despite the fact that HSEu shows essentially no correla-
tion with HSEd (see the section “Comparison With Other
Solvent-Exposure Measures”), the 2D histograms dis-
cussed here show that the different amino acids do have
strong preferences for specific (HSEu, HSEd) ranges.
Solely based on the shape of their HSE histograms, the
amino acids can be subdivided in the following four groups:
1. side chain buried (Cys, Ile, Leu, Met, Phe, Trp, Tyr, Val),
2. side chain exposed (Arg, Asn, Asp, Gln, Glu, Lys, Ser,
Thr, Gly, Pro), 3. Ala and 4. His. Within the side chain
buried group, Cys and Met differ most from the average
group profile. In general, the histogram profiles are more
uniform for the side chain exposed than for the side chain
buried residues.

Conservation

Following Rost and Sander,17 we evaluated the conserva-
tion of the different solvent-exposure measures by calculat-
ing the correlation coefficient of their values for equivalent
residues in a dataset of related structures. We used a
database that consists of superimposed structures with
the same fold, but without a probable common evolution-
ary origin (see Methods). Hence, this dataset would be
considered “hard” from a structure prediction point of
view. The correlation coefficients for the various measures
are shown in Table II.

Three measures based on counting C� neighbors
(HSE�u, HSE�u and CN) are most conserved, with values
around 0.70. The DSSPr, RD and RD� measures all show
substantially lower correlation coefficients, with values
around 0.60. The correlation coefficient for DSSPr re-
ported by Rost and Sander (0.77) is considerably higher,
probably due to the fact that it was calculated from a
dataset of homologous protein pairs. Finally, DSSPa is
least conserved (0.53), which is expected since this mea-
sure is not corrected for amino acid size. Interestingly,
HSEu is more conserved than HSEd, probably due to
conserved side chain dependent interactions. HSE� and
HSE� are essentially equally conserved.

Correlation With the Stability of Mutants

Accessible surface area and (as recently shown) residue
depth18,22,35–37 are correlated with the stability of mu-
tants. For cavity creating mutants of hydrophobic resi-
dues, the change in protein stability (as measured by ��G)
is correlated with the change in buried accessible surface
area between wild type and mutant, and with the sum of
the atom depths of the atoms that are deleted upon
mutation. In addition, the CN is correlated to the ��G
values of Ile/Leu/Val to Ala mutants.36,38

We investigated the correlation between HSE and pro-
tein stability using 91 ��G values of Val/Ile/Leu to Ala
point mutants, and compared it with the correlation using
RD, CN and loss of solvent exposed surface area (�ASA).
Figure 12 shows plots of �ASA, RD, and HSE versus ��G,
together with the linear least-squares fit to the data. Table
III shows the correlation coefficients between the various
measures and ��G.

HSE�u, HSE�u, CN and �ASA show about the same
correlation with ��G. RD correlates significantly worse,
while HSE�d and HSE�d are essentially uncorrelated. The
low correlation coefficients of the HSEd measure shows
again that the half-sphere construction apparently separates
two regions around a residue that are profoundly different,
this both in geometric and energetic terms.

In all plots, the same five mutants with ��G below �6.0
kcal/mol appeared to be outliers. Their ��G values are
also considerable lower than what is typical.36,38 Hence,
we also calculated the correlation coefficients with these
values omitted (Table III). For all measures, except HSE�d
and HSE�d which remain uncorrelated, the correlation
increased significantly. Both HSE�u and HSE�u values
now correlate significantly better with ��G than the CN.

Fig. 12. ��G (y-axis, kcal/mol) versus different measures of solvent
exposure (x-axis). The line is the linear least-squares fit to the data
(including the ��G values below �6 kcal/mol).

TABLE II. Conservation of the Various Solvent Exposure Measures†

HSEu� HSEu� HSEd� HSEd� CN DSSPa DSSPr RD RD�

0.71 0.69 0.61 0.64 0.72 0.53 0.61 0.62 0.58
†Calculated as a correlation coefficient, see text.
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HSE�u and HSE�u have about the same correlation
coefficient as �ASA (approximately �0.60). This is surpris-
ing, since HSE� solely uses information on C� positions,
while �ASA requires a full atom model.

In conclusion, HSE�u, HSE�u and �ASA correlate
equally well with ��G, with a correlation coefficient of
approximately �0.60. The CN and RD measures correlate
significantly less, with correlation coefficients of �0.54
and �0.45 respectively. HSE�d and HSE�d, which mea-
sure the number of neighboring residues in the direction
opposite the side chain, are essentially uncorrelated.

The plots in Figure 12 also illustrate a feature that was
already mentioned in the section “Comparison With Other
Solvent-Exposure Measures” above: ASA tends to measure
residues as buried, while RD tends to measure residues as
exposed. In contrast, HSE� and HSE� values show a more
uniform distribution of values.

CONCLUSIONS

We have shown that HSE fulfills the demands outlined
in the introduction: it is easy to implement and (in
principle) fast to compute, deals with a wide range of
solvent-exposure conditions, is well correlated with pro-
tein stability and is considerably more conserved than
most other measures. Various examples also show that
HSE has many features that are desirable in a solvent-
exposure measure (for example, capturing the alternating
exposed/buried pattern in a �-sheet, distinguishing be-
tween exposed, partially buried and deeply buried resi-
dues), and makes relevant comparison possible between
amino acids regardless of differences in size (see the
section “Amino Acid Dependency” above).

Rost and Sander17 suggested the possibility of develop-
ing a new descriptor of solvent exposure that is better
conserved than the classical rASA measure. This hypotheti-
cal measure would obviously benefit solvent-exposure pre-
diction methods, on the condition that it is also at least as
“informative” as the rASA measure. Based on the results
described here, the HSE measure seems to be the best
choice for use in these methods, since it is (comparatively)
well conserved and more “informative” than the CN, RD,
and rASA measures.

Analysis of histograms of HSE values (Fig. 2) and the
correlation with the stability of mutants prove that the
half-sphere construction separates two fundamentally dif-
ferent regions around an amino acid, both in geometric
and energetic terms.

The two-dimensional HSE histograms (Figs. 9–11) show
a high dependence on amino acid type. Depending on the
overall shape of the histograms, the amino acids can be
subdivided in four groups: 1. side chain buried, 2. side

chain exposed, 3. Ala, and 4. His. Ala emerges as the
“average” residue, unlike the other aliphatic residues.

Importantly, calculation of the HSE does not require a
full atom model. Hence, it can be used with simplified
protein models, for example C�-only models, or models
that use the C� position plus a single center representing
the side chain. The use of these models has become very
wide spread in fold recognition, structure prediction and
protein folding simulations.8,10 The HSE approach allows
these methods to deal with solvent exposure in a more
sophisticated way than current methods (typically based
on the CN2), without imposing a large speed penalty.

The fact that HSE does not depend on full atomic detail
is of course also its weakness. In the analysis of mutants or
ligand binding for example, one often wants to analyze
subtle features on an atomic scale. In those cases, rASA
and RD are definitely the preferred methods.

We suggest that HSE is an excellent target for solvent-
exposure prediction. Most methods developed since the
pioneering work of Rost and Sander17 make use of the
rASA, typically calculated by DSSP.39–44 Few studies
exist that try to predict solvent-exposure measures other
than rASA.

The method of Pollastri et al.21 predicts the coordination
number, using various radii between 6 and 12 Å. Karchin
et al.33 evaluated a number of coordination number vari-
ants with respect to conservation and predictability. In
general, measures based on neighborhood counts were
both more conserved and more predictable. The most
conserved, most predictable, and best performing mea-
sures were based on counting neighbors around the C�
atom (using radii of 16 and 14 Å). This can be understood
in view of the results presented in this article: using the C�
as a center instead of the C� atom, the CN becomes biased
towards the HSE�u measure.

In this light and given the properties of the HSE
measure discussed in this article, it is not unlikely that a
method based on HSE� or HSE� would perform even
better. We are planning to explore the use of HSE for the
prediction of solvent exposure and protein structure in
general in the future.
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