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Nonlinear Backpropagation: Doing Backpropagation
Without Derivatives of the Activation Function

John Hertz, Anders Krogh, Benny Lautrup, and Torsten Lehmann

Abstract—The conventional linear backpropagation algorithm
is replaced by a nonlinear version, which avoids the necessity for
calculating the derivative of the activation function. This may be
exploited in hardware realizations of neural processors. In this
paper we derive the nonlinear backpropagation algorithms in
the framework of recurrent backpropagation and present some
numerical simulations of feedforward networks on the NetTalk
problem. A discussion of implementation in analog very large
scale integration (VLSI) electronics concludes the paper.

Index Terms—Backpropagation, neural-network implementa-
tion, neural networks, recurrent backpropagation.

I. INTRODUCTION

FROM A simple rewriting of the backpropagation algo-
rithm [1] a new family of learning algorithms emerges

which we call nonlinear backpropagation. In the normal back-
propagation algorithm one calculates the errors on the hidden
units from the errors on the output neurons by means of a linear
expression. The nonlinear algorithms presented here have the
advantage that the backpropagation of errors goes through the
same nonlinear units as the forward propagation of activities.

Using this method it is no longer necessary to calculate
the derivative of the activation function for each neuron in
the network as it is in standard backpropagation. Whereas the
derivatives are trivial to calculate in a simulation, they appear
to be of major concern when implementing the algorithm in
hardware, be it electronic or optical. For these reasons we
believe that nonlinear backpropagation is very well suited for
hardware implementation. This is the main motivation for this
work.

In the limit of infinitely small learning rate the nonlinear
algorithms become identical to standard backpropagation. For
small learning rates the performance of the new algorithms
is therefore comparable to standard backpropagation, whereas
for larger learning rates it performs better. The algorithms
generalize easily to recurrent backpropagation [2], [3] of
which the standard backpropagation algorithm for feedforward
networks is a special case.

In this paper we derive the nonlinear backpropagation
(NLBP) algorithms in the framework of recurrent backpropa-
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gation and present some numerical simulations of feedforward
networks on the NetTalk problem [4]. A discussion of im-
plementation in analog very large scale integration (VLSI)
electronics concludes the paper.

II. THE ALGORITHMS

In this section we present the algorithms for nonlinear
backpropagation. The derivation can be found in the next
section.

We consider a general network, recurrent or feedforward,
with neurons. The neuron activities are denotedand the
weight of the connection from neuronto neuron is denoted

. Threshold values are included by means of a fixed bias
neuron numbered

The activation (output) of a unit in the network is then

(1)

where is the activation function and is external input to
the unit. These equations are applied repeatedly for all neurons
until the state of activity converges toward a fixed point. For
a feedforward network this is guaranteed to happen, and the
activities should be evaluated in the forward direction, i.e.,
from input toward output. For a recurrent network there is no
guarantee that these equations will converge toward a fixed
point, but we shall assume this to be the case. The equations
are, however, simplest in the general form.

The error of the network is defined as

(2)

where are the target values for the output units when the
input is pattern and is the actual output for that same
input pattern. For nonoutput units .

We define thebackward activationsas

(3)

where the constants and will be discussed shortly. These
variables are “effective” or “moving” targets for hidden units
in the network. For output units in a feedforward network the
sum on is empty, and if the errors are all zero, these
equations have the simple solution . For nonzero error,
iteration of these equations is assumed to lead to a fixed point
in the backward activation state [one can easily show that if the
forward equations (1) converge, the backward equations will
also converge]. Notice that during iteration of the backward
activations we keep the forward activations fixed.
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Now, consider a set of input–output patterns indexed by
and assume that the squared error is used as

the cost function

(4)

In terms of these new variables the nonlinear backpropaga-
tion is then like delta-rule learning

(5)

The constants and are replacements for the usual
learning rate. The reason we speak of a family of of algorithms
is that different choices of yield different algorithms. Here
the parameters are allowed to differ from unit to unit, but
usually they will be the same for large groups of units (e.g.,
ones forming a layer) which simplifies the equations. We
consider two choices of particularly interesting:
and . For the first of these plays a role similar to
the learning rate in delta-rule learning, sinceis replaced by

in (5).
For the entropic error measure [5] the weight update is the

same (5), but is defined as

(6)

In this case the weight update for an output unit is exactly like
the standard one, . For a network with
linear output units optimizing the squared error we obtain the
same equations for .

Obviously these algorithms can be usedonline, i.e., chang-
ing the weights after each pattern, just as is common when
using the standard backpropagation algorithm.

Finally, we would like to explicitly show the important
cases of and for a feedforwardnetwork.
For simplicity the index will be dropped. Notation:

numbers the layers from zero (output) to(input).
the weight from unit in layer to unit in layer .

Any other variable (like and with superscript refers
to that variable in layer.

It will be assumed that is the same for all units in a
layer, . The error on the output units are denotedas
before. Here are the two versions:

Output unit:
(squared error).

(entropic error).
Hidden unit:
Weight update:

Output unit:
(squared error).

(entropic error).
Hidden unit:
Weight update:

III. D ERIVATION OF NLBP

In this section we derive the nonlinear backpropagation in
the framework of recurrent backpropagation. As an introduc-
tion, we follow the derivation of recurrent backpropagation in
[5, p. 172–175]. See also [3].

A. Standard Recurrent Backpropagation

Assume fixed points of the network are given by (1), and
that the learning is governed by an error measurelike (4).
If we define , which for (4) is identical to
(2), the gradient descent learning rule is

(7)

Differentiation of the fixed point equation (1) for yields

(8)

with and the matrix L given by

(9)

If this matrix is positive definite, the dynamics will be
contractive around a fixed point. According to our assumptions
this must therefore be the case.

Defining

(10)

the weight update can be written as

(11)

and the ’s are the solutions to

(12)

These are the standard backpropagation equations for a general
network. In a feedforward network they converge to a fixed
point when iterated in the backward direction from output
toward input. For a general recurrent net they will converge
toward a fixed point when the-matrix is positive definite, as
may easily be demonstrated.

B. Nonlinear Backpropagation

If the error measure is given by (4) the derivatives of the
error measure are

for the output units
otherwise.

(13)

For an output unit in a feedforward network we thus find
. One of the ideas of the nonlinear backpropagation

is to forcethat interpretation on all the units, defining “effective
targets” such that

(14)
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For small (11) can then be interpreted as a first-order
Taylor expansion

(15)

where . The first term in the brackets is just the
output of a unit with the normal input and the backpropagated
error added—the effective target:

(16)

Using this definition of and the definition (14) of , we
see that for small the weight change will be essentially the
same as in standard backpropagation. Here, however, we treat
these equations as an algorithm in its own right, independently
of how good an approximation to standard backpropagation
it may be. We show numerically below that it converges at
least as well as standard backpropagation, even if it does
not approximate the standard algorithm well. Note however
that the “integration” in (15) is quite arbitrary; it is just one
possibility out of many given by

(17)

where the ’s are arbitrary parameters similar to the learning
rates . For consistency one now has to replaceby

(18)

Then is finally given by (3) and the weight update by (5).
Formally the “integration” in (15) is only valid for small

[or small in (17)]. But for larger there is no guarantee
that the clean gradient descent converges anyway, and these
nonlinear versions might well turn out to work better.

By making very large compared to , one can make the
NLBP indistinguishable from standard backpropagation (the
Taylor expansions will be almost exact). That would be at
the expense of high numerical instability, becausewould
be very close to and the formula for the weight update,

, would require very high precision. On
the other hand, very small’s are likely to take the algorithm
too far from gradient descent. For these reasons we believe that
the most interesting range is . The limit is
the most stable, numerically, and is the most gradient-
descent-like limit. Notice that if the ratios are the
same for all neurons in the network then the equations take
the simpler form

(19)

and

(20)

C. Entropic Error Measure

The entropic error measure is

(21)

if the activation function is equal to . A similar error
measures exists for other activation functions like

. It can be shown that for this and similar error
measures

(22)

Instead of (3) should then be defined as (6).

D. Internal Representations

For a feedforward architecture with a single hidden layer,
the weight change formulas resemble those obtained using
the method of internal representations [6]. However, they
are not quite the same. Using our present notation, in the
present method we find a change for the weight from hidden
unit to output unit of , while the
internal representation approach it is .
For the input-to-hidden layer the expressions for the weight
changes in the two approaches look the same, but the effective
targets in them are different. They are both calculated by
backpropagating errors from the output units, but in
the present case theseare simply the result of
the forward propagation, while in the internal representations
approach, , i.e., they are obtained by
propagating the effective targets on the hidden layer forward
through the hidden-to-output weights.

IV. TEST OF ALGORITHM

The algorithms have been tested on the NetTalk problem
using a feedforward network with an input window of seven
letters and one hidden layer consisting of 80 hidden units.
The algorithms were run in online mode and a momentum
term of 0.8 was used. They were tested for these values of

and 1.0. The learning rate was scaled
according to the number of connections feeding into unit
, such that —a standard method often used in

backpropagation. Several values were tried for. The initial
weights were chosen at random uniformly between
and . For each value of and , 50 cycles of learning
was done, and the squared error normalized by the number of
examples was recorded at each cycle.

For all runs the final error was plotted as a function of, see
Fig. 1. Clearly the runs with are almost indistinguisable
from standard backpropagation, which is also shown. As a
“corollary” these plots show that the entropic error measure
is superior—even when the object is to minimize squared
error (see also [7]). Also, NLBP seems superior to normal
backpropagation for large learning rates which is important to
hardware implementations (cf. [8]).
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(a)

(b)

Fig. 1. Plots showing the squared error after 50 training epochs as a function of the size of the learning rate�: (a) is the squared error cost function and
(b) is the entropic error measure. The solid line represents the standard backpropagation algorithm, the dashed line the nonlinear backpropagationalgorithm
with � = �, and the dot-dashed line the one with� = 1: The NLBP with� = 0:25 (*), � = 0:5 (x), and� = 0:75 (o) are also shown.

In Fig. 2 the time development of the error is shown for the
extreme values of and fixed.

V. HARDWARE IMPLEMENTATIONS

All the algorithms can be mapped topologically onto analog
VLSI in a straight-forward manner, though selecting the most
stable is the best choice because of the limited precision of this
technology. In this section, we will give two examples of the
implementation of the algorithms for a feedforward network
using and the squared error cost function.

Defining a neuronerror, for each layer (note for
the output layer)

for
for (23)

we can write (18) for as

(24)
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Fig. 2. The decrease in error as a function of learning time for standard backpropagation (solid line), NLBP with� = � (dashed line), and� = 1

(dot-dashed line). In all three cases the squared error function and� = 0:05 was used.

Fig. 3. Continuous time nonlinear backpropagation “neuron module” with
hyperbolic tangent activation function. The precision is determined by the
matching of the two differential pairs.

Thus, topologically this version of nonlinear backpropagation
maps in exactly the same way on hardware as the original
backpropagation algorithm—the only difference being how
is calculated for backpropagation) [9] (see also
[10]).

The system consists of two modules: A “synapse module”
which calculates , propagates forward and propagates
backward ; and a “neuron module” which forward propa-
gates and backward propagates. To change the learning
algorithm to nonlinear backpropagation, it is thus necessary
only to change the “neuron module.”

A simple way to implement a sigmoid-like activation func-
tion is by the use of a differential pair. Fig. 3 shows a
nonlinear backpropagation “neuron module” with a hyperbolic
tangent activation function. Applying and as voltages
gives the and outputs as differential currents (the
“synapse module” can just as well calculate as ).
It is interesting to notice that the circuit is very similar
to the one used in [11] to calculate the derivative of the

Fig. 4. Discrete time nonlinear backpropagation “neuron module” with non-
linear activation function. The precision is determined by the accuracy of the
switched capacitor.

activation function: Replacing by a small constant, , the
output will approximate . Using the circuit in the

proposed way, however, gives better accuracy: Theis not
a “small” quantity which makes the inherent inaccuracies less
significant, relatively. Further, the circuit calculates the desired

directly, eliminating the need of an extra multiplier—and
thus eliminating a source of error. The accuracy of the circuit
is determined by the matching of the two differential pairs
and of the bias sources. This can be in the order of 1% of the
output current magnitude.

In a “standard implementation” of the “synapse module,”
the and outputs will be available as currents and the

and inputs must be applied as voltages. Thus the above
implementation requires accurate transresistances to function
properly. Also, as the same function is used to calculate the

s and the s, it would be preferable to use the same
hardware as this eliminates the need of matched components.
This is possible if the system is not required to function in
continuous time, though the output has to be sampled (which
introduces errors).
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In Fig. 4 such a simplified discrete time “neuron module”
which reuses the activation function block and which has
current input/voltage outputs is shown. During the clock
phase, is available at the output and is sampled at the
capacitor. During the clock phase, is available at the
output. The activation function saturates such that

, though it is not very well defined. This is of
no major concern, however; the accuracy is determined by
the switched capacitor. The six transistors can be replaced by
any current in/voltage out (nonlinear) circuit. Using design
techniques to reduce charge injection and redistribution, the
accuracy can be in the order of 0.1% of the output voltage
swing.

The implementation of the “synapse module” compatible
with the (nonlinear) backpropagation algorithm is not a trivial
task. In particular the presence of various offset errors are
problematic. It is not the purpose of the present paper to deal
with these matters, though, which have been the concern of
other authors (see [12] and [13]).

As illustrated, the nonlinear backpropagation learning al-
gorithm is well suited for analog hardware implementation,
though offset compensation techniques still have to be em-
ployed. It maps topologically on hardware in the same way as
ordinary backpropagation, but the circuit to calculate thes is
much more efficient: It can approximate the learning algorithm
equations more accurately and as the algorithm requires only
simple operations apart from the activation function, design
efforts can be put on the electrical specifications of the
hardware (input impedance, speed, noise immunity, etc.) and
on the general shape of the sigmoid-like activation function.
Further, as the algorithm requires only one “special function,”
it has the potential of very high accuracy through reuse of this
function block.

Regarding optical implementations of gradient descent like
learning, we would expect NLBP to offer similar advantages
over normal backpropagation as in electronic implementations
(cf. [14]).

VI. CONCLUSION

A new family of learning algorithms have been derived
that can be thought of as “nonlinear gradient descent” type
algorithms. For appropriate values of the parameters they are
almost identical to standard backpropagation. By numerical
simulations of feedforward networks learning the NetTalk
problem it was shown that the performance of these algorithms
were very similar to standard backpropagation for the range
of parameters tested.

The algorithms have two important properties that we
believe make them easier to implement in electronic hardware
than the standard backpropagation algorithm. First, no deriva-
tives of the activation function need to be calculated. Second,
the backpropagation of errors is through the same nonlinear
network as the forward propagation, and not a linearized
network as in standard backpropagation. Two examples of
how analog electronic hardware can utilize these properties
have been given. These advantages may also be expected to
carry over to optical implementations.
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