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Nonlinear Backpropagation: Doing Backpropagation
Without Derivatives of the Activation Function

John Hertz, Anders Krogh, Benny Lautrup, and Torsten Lehmann

Abstract—The conventional linear backpropagation algorithm gation and present some numerical simulations of feedforward
is replaced by a nonlinear version, which avoids the necessity for networks on the NetTalk problem [4]. A discussion of im-

calculating the derivative of the activation function. This may be plementation in analog very large scale integration (VLSI)
exploited in hardware realizations of neural processors. In this .
electronics concludes the paper.

paper we derive the nonlinear backpropagation algorithms in
the framework of recurrent backpropagation and present some

numerical simulations of feedforward networks on the NetTalk II. THE ALGORITHMS

problem. A discussion of implementation in analog very large ) ) . .

scale integration (VLSI) electronics concludes the paper. In this section we present the algorithms for nonlinear
backpropagation. The derivation can be found in the next

Index Terms—Backpropagation, neural-network implementa-

tion, neural networks, recurrent backpropagation. section.

We consider a general network, recurrent or feedforward,
with N neurons. The neuron activities are denotéénd the
[. INTRODUCTION weight of the connection from neurgnto neuron is denoted

ROM A simple rewriting of the backpropagation algo2i;- Threshold values are included by means of a fixed bias

Frithm [1] a new family of learning algorithms emerged'€uron numbered = 0.

which we call nonlinear backpropagation. In the normal back- The activation (output) of a unitin the network is then

Prc_)pagation algorithm one calculates the errors on the hi_dden Vi = g(hi), hi= szjVj s @

units from the errors on the output neurons by means of a linear F

expression. The nonlinear algorithms presented here have the ) o ) ) )

advantage that the backpropagation of errors goes through Yftére g is the activation function ang; is external input to

same nonlinear units as the forward propagation of activitid§l€ unit. These equations are applied repeatedly for all neurons
Using this method it is no longer necessary to calculathtil the state of activity converges toward a fixed point. For

the derivative of the activation function for each neuron i feedforward network this is guaranteed to happen, and the

the network as it is in standard backpropagation. Whereas g@ivi?ies should be evaluated in the forward direction,_ ie.,

derivatives are trivial to calculate in a simulation, they appefem input toward output. For a recurrent network there is no

to be of major concern when implementing the algorithm iguarantee that these equations will converge toward a f|?<ed

hardware, be it electronic or optical. For these reasons R@iNt, but we shall assume this to be the case. The equations

believe that nonlinear backpropagation is very well suited fé€, however, simplest in the general form.

hardware implementation. This is the main motivation for this The error of the network is defined as

work. . . e = G — Vi (2)
In the limit of infinitely small learning rate the nonlinear

hi-i-ﬂ
o

T

algorithms become identical to standard backpropagation. mgiere (; are the target values for the output units when the
small learning rates the performance of the new algorithrigput is pattern{; and Vj is the actual output for that same
is therefore comparable to standard backpropagation, wheréusit pattern. For nonoutput units = 0.
for larger learning rates it performs better. The algorithms We define thebackward activationsas
generalize easily to recurrent backpropagation [2], [3] of g
which the standard backpropagation algorithm for feedforward % = g< Z —(yr — Vi)wri + € ) 3)
networks is a special case. M

In this paper we derive the nonlinear backpropagatiaghere the constantg andc; will be discussed shortly. These
(NLBP) algorithms in the framework of recurrent backpropayariables are “effective” or “moving” targets for hidden units
in the network. For output units in a feedforward network the

Manuscript received August 15, 1995; revised August 5, 1997. sum onk is empty, and if the errorg; are all zero, these

J. Hertz is with Nordita, 2100 Copenhagen, Denmark. _ __equations have the simple solutign= V;. For nonzero error,

A. Krogh is with the Center for Biological Sequence Analysis, Technica] . fth h . d lead fixed .
University of Denmark, 2800 Lyngby, Denmark. ! eration of these equat_lons is assumed to ea to a fixe _pomt

B. Lautrup is with the The Niels Bohr Institute, 2100 Copenhagenn the backward activation state [one can easily show that if the
Denmark. o _ _forward equations (1) converge, the backward equations will

T. Lehmann is with the Department of Information Technology, TechmcalI Noti hat duri . . f the back d
University of Denmark, 2800 Lyngby, Denmark. also cqnverge]. otice that during |Ferqt|0n 0 the backwar

Publisher Item Identifier S 1045-9227(97)07971-X. activations we keep the forward activations fixed.

1045-9227/97$10.001 1997 IEEE



1322 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 6, NOVEMBER 1997

Now, consider a set of input—output patterns indexed by lll. DERIVATION OF NLBP

p=1,---,p, and assume that the squared error is used agy this section we derive the nonlinear backpropagation in
the cost function the framework of recurrent backpropagation. As an introduc-

P tion, we follow the derivation of recurrent backpropagation in
_ 1 2
Eyq =3 ) () (4) 5, p. 172-175]. See also [3].
pn=1l k
In terms of these new variables the nonlinear backpropag®- Standard Recurrent Backpropagation

tion is then like delta-rule learning Assume fixed points of the network are given by (1), and

Aw;j = o Z(yzmu — V)V . (5) that the learning is governed by an error meastrike (4).
If we definee; = —(0E/3V;), which for (4) is identical to

fZ), the gradient descent learning rule is

The constantsy; and »; are replacements for the usua

learning rate. The reason we speak of a family of of algorithms A — Z . Vi 7)
is that different choices of yield different algorithms. Here pe =1 - M Owpy

the parameters are allowed to differ from unit to unit, but

usually they will be the same for large groups of units (e.gRifferentiation of the fixed point equation (1) fdf; yields
ones forming a layer) which simplifies the equations. We

m

consider two choices ofe particularly interestingoy; = ; Vi = (L_l)kaIqu (8)
and «; = 1. For the first of these) plays a role similar to Iwpq

the learning rate in delta-rule learning, sinees replaced by with V/ = ¢'(h;) and the matrix L given by

7 in (5). ! ‘

For the entropic error measure [5] the weight update is the Lij = &5 — Viwi;. 9)
same (5), buty; is defined as
If this matrix is positive definite, the dynamics will be
vi=g <hi + ﬂ Z %(yk _ Vk)wki> + ﬂei_ (6) contractive around a fixed point. According to our assumptions

i 7 Mk Qi this must therefore be the case.
- , . . Defining
In this case the weight update for an output unit is exactly like
the standard onedw;; = »;3° , ¢/'V}'. For a network with 5 = V’} :6 (L) (10)
linear output units optimizing the squared error we obtain the k

same equations foy;. ) _
Obviously these algorithms can be usedine, i.e., chang- the weight update can be written as
ing the weights after each pattern, just as is common when
using the standard backpropagation algorithm. Aty =16V (11)
Finally, we would like to explicitly show the important
cases ofa; = 1 and «; = ; for a feedforward network.
For simplicity the index. will be dropped. Notatlor]. 5 =V <Z S+ 6k>'
l numbers the layers from zero (output) Zo(input). -
wﬁj the weight from unitj in layer/+-1 to unit¢ in layer!.
Any other variable (likey and V) with superscript refers These are the standard backpropagation equations for a general
to that variable in layei. network. In a feedforward network they converge to a fixed
It will be assumed thaty; is the same for all units in a Point when iterated in the backward direction from output

layer, n! = '. The error on the output units are denoteds toward input. For a general recurrent net they will converge

and theé’s are the solutions to

(12)

before. Here are the two versions: toward a fixed point when th&-matrix is positive definite, as
a=1 may easily be demonstrated.

Output unit: i K )

0 = g(h? + 1n°;) (squared error). B. Nonlinear Backpropagation

v = V.0 + nle; (entropic error). If the error measure is given by (4) the derivatives of the

Hidden unit:y! = g(hd + (' /n"1) 32, (Wit = ViThHwlst)  error measure are

H . +1 .

Weight updateAng =(y! - Vil)Vj* o= {Ck — Vi for the output units (13)

= 1 , 0 otherwise.

(4
For an output unit in a feedforward network we thus fipd=

0 = g(h? + ;) (squared error). V{(¢.—Vi). One of the ideas of the nonlinear backpropagation
yb VOt e (entropic error). is toforcethat interpretation on all the units, defining “effective
Hidden unit:yﬁ _ g(hi + Ek (yi—l _ Vkl_l)wi:l) targets i such that
Weight updateAw!; = n'(y! — VHVIH

Output unit:

bi o<y — Vi (14)
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For smalln (11) can then be interpreted as a first-ordeC. Entropic Error Measure

Taylor expansion The entropic error measure is
Aw;; =né;V; =nV/ <Z Srwpg + ei> V; B 1 14V
N _zi: oI+ Vi)log 7
1 1-V;
~|g|lhi+7n Zéjw]'i +el|l | —glha)|V;  (15) + 5(1 —V;)log e (21)

J

where g(h;) = V;. The first term in the brackets is just thdf the activation functiong is equal totanh. A similar error
output of a unit with the normal input and the backpropagaté@easures exists for other activation functions liker) =

error added—the effective target: (14 ¢=*)~L. It can be shown that for this and similar error
measures
Y 9< +772kwk +e ) (16) aiE:_@:ﬁ_' 22)
k ov, V!

Using this definition ofy; and the definition (14) obf;, we )

see that for smalh the weight change will be essentially thénstéad of (3)y; should then be defined as (6).
same as in standard backpropagation. Here, however, we treat

these equations as an algorithm in its own right, independenfly Internal Representations

of how good an approximation to standard backpropagationFor a feedforward architecture with a single hidden layer,
it may be. We show numerically below that it converges ate weight change formulas resemble those obtained using
least as well as standard backpropagation, even if it do@e method of internal representations [6]. However, they
not approximate the standard algorithm well. Note howevgfe not quite the same. Using our present notation, in the
that the “integration” in (15) is quite arbitrary; it is just onepresent method we find a change for the weight from hidden
possibility out of many given by unit j to output uniti of n[¢; — g(3, wiVi)]V;, while the
n; internal representation approach itrif; — g(>°, wiryr)|y;-

Aw;j =n6;Vy = ai|g| hi + P Z5kwm +e For the input-to-hidden layer the expressions for the weight
Lok changes in the two approaches look the same, but the effective
targetsy; in them are different. They are both calculated by
backpropagating error§ — V; from the output units, but in
the present case theBgare simply the resuly(3_, w;;V;) of

= g(h)|V; 17)

where thew;’s are arbitrary parameters similar to the learning,e oy arq propagation, while in the internal representations
ratesr;. For consistency one now has to replageby approach,V; = g(zj wijy;), i.e., they are obtained by
6 = a—f(yk - Vi). (18) propagating the effective targets on the hidden layer forward

o ) . through the hidden-to-output weights.
Theny; is finally given by (3) and the weight update by (5).

Formally the “integration” in (15) is only valid for smal]
[or smalln; /«; in (17)]. But for larger there is no guarantee
that the clean gradient descent converges anyway, and thesEhe algorithms have been tested on the NetTalk problem
nonlinear versions might well turn out to work better. using a feedforward network with an input window of seven

By makinge; very large compared tg;, one can make the letters and one hidden layer consisting of 80 hidden units.
NLBP indistinguishable from standard backpropagation (théhe algorithms were run in online mode and a momentum
Taylor expansions will be almost exact). That would be &rm of 0.8 was used. They were tested for these values of
the expense of high numerical instability, becaysavould ~i: 7:,0.25,0.5,0.75, and 1.0. The learning raig was scaled
be very close toV; and the formula for the weight update according to the numbes; of connections feeding into unit
Aw;; = a;(y; — V;), would require very high precision. Ont, such thatp; = n/,/n;—a standard method often used in
the other hand, very small's are likely to take the algorithm backpropagation. Several values were tried-fofThe initial
too far from gradient descent. For these reasons we believe t#gights were chosen at random uniformly betwe&hs/./n;
the most interesting rangeis < «; < 1. The limita; = n; is and0.5/./n;. For each value ofr andz, 50 cycles of learning
the most stable, numerically, and = 1 is the most gradient- Was done, and the squared error normalized by the number of
descent-like limit. Notice that if the ratios = 7;/a; are the examples was recorded at each cycle.
same for all neurons in the network then the equations takeFor all runs the final error was plotted as a functiomp$ee

IV. TEST OF ALGORITHM

the simpler form Fig. 1. Clearly the runs witlax = 1 are almost indistinguisable
from standard backpropagation, which is also shown. As a
yi = g<hi + Z(yk — Vi) wpi + )\q) (19) ‘“corollary” these plots show that the entropic error measure
% is superior—even when the object is to minimize squared
and error (see also [7]). Also, NLBP seems superior to normal

backpropagation for large learning rates which is important to
Aw;; = o (y; — Vi)V (20) bhardware implementations (cf. [8]).
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Fig. 1. Plots showing the squared error after 50 training epochs as a function of the size of the learningapte the squared error cost function and
(b) is the entropic error measure. The solid line represents the standard backpropagation algorithm, the dashed line the nonlinear baclgpgopitigation
with o« = 7, and the dot-dashed line the one with= 1. The NLBP witha = 0.25 (*), @ = 0.5 (x), anda = 0.75 (0) are also shown.

In Fig. 2 the time development of the error is shown for the Defining a neurorerror, ¢, for each layer (note! = ¢; for

extreme values ofv and  fixed. the output layer)
V.. HARDWARE |MPLEMENTATION§ G = VO, forl =0
All the algorithms can be mapped topologically onto analog e = Zél—lwlfl for >0 (23)
VLSI in a straight-forward manner, though selecting the most . Bk

stable is the best choice because of the limited precision of this

technology. In this section, we will give two examples of theve can write (18) fora; = 7; as

implementation of the algorithms for a feedforward network

using «; = 7; and the squared error cost function. 8t = g(hl +€b) — g(hl). (24)

T
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Fig. 2. The decrease in error as a function of learning time for standard backpropagation (solid line), NLBF withh (dashed line), andx = 1
(dot-dashed line). In all three cases the squared error functionpasd 0.05 was used.
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Fig. 3. Continuous time nonlinear backpropagation “neuron module” withig. 4. Discrete time nonlinear backpropagation “neuron module” with non-
hyperbolic tangent activation function. The precision is determined by thieear activation function. The precision is determined by the accuracy of the
matching of the two differential pairs. switched capacitor.

Thus, topologically this version of nonlinear backpropagaticf?‘ftiv""tion function: Replac/ing; by a small constantd, the
maps in exactly the same way on hardware as the origifalCUtPut will approximatey’(h;) - A. Using the circuit in the

backpropagation algorithm—the only difference being hdw pr?posefi way, however, gives better accuracy: Zhis not
is calculateds! = ¢'(h)e! for backpropagation) [9] (see also® small” quantity which makes the inherent inaccuracies less
[10)) ¢ v significant, relatively. Further, the circuit calculates the desired

U di imi i inlier—
The system consists of two modules: A “synapse modulg? dlre(_:tly, el_lmlnatlng the need of an extra multiplier f';md_
. f l thus eliminating a source of error. The accuracy of the circuit
which calculates\w;;, propagated; forward and propagates. . ) ) : ;
backwarde=!- and a “neuron module” which forward bro a_IS determined by the matching of the two differential pairs
J o P _p and of the bias sources. This can be in the order of 1% of the
gatesV; and backward propagatés To change the learning output current magnitude.

algorithm to nonlinear backpropagation, it is thus necessary|, 5 “standard implementation” of the “synapse module,”
only to change the “neuron module.” the Al and ¢ outputs will be available as currents and the

A simple way to implement a sigmoid-like activation fuchil andé! inputs must be applied as voltages. Thus the above
tion is by the use of a differential pair. Fig. 3 shows @mplementation requires accurate transresistances to function
nonlinear backpropagation “neuron module” with a hyperboligroperly. Also, as the same function is used to calculate the
tangent activation function. Applying! and —¢; as voltages V!s and thedls, it would be preferable to use the same
gives the V! and §! outputs as differential currents (thehardware as this eliminates the need of matched components.
“synapse module” can just as well calculated as ¢!). This is possible if the system is not required to function in
It is interesting to notice that the circuit is very similarcontinuous time, though the output has to be sampled (which
to the one used in [11] to calculate the derivative of thiatroduces errors).
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In Fig. 4 such a simplified discrete time “neuron module”
which reuses the activation function block and which has
current input/voltage outputs is shown. During the clock [
phase,V! is available at the output and is sampled at the
capacitor. During thep, clock phaseg! is available at the [2]
output. The activation function saturates such that, <
V! < Viax though it is not very well defined. This is of
no major concern, however; the accuracy is determined bigl
the switched capacitor. The six transistors can be replaced
any current in/voltage out (nonlinear) circuit. Using design
techniques to reduce charge injection and redistribution, the
accuracy can be in the order of 0.1% of the output voltagc[e5]
swing. [6]

The implementation of the “synapse module” compatible
with the (nonlinear) backpropagation algorithm is not a trivialf7;
task. In particular the presence of various offset errors are
problematic. It is not the purpose of the present paper to deld
with these matters, though, which have been the concern of
other authors (see [12] and [13]). (9]

As illustrated, the nonlinear backpropagation learning al-
gorithm is well suited for analog hardware implementationo]
though offset compensation techniques still have to be em-
ployed. It maps topologically on hardware in the same way 28]
ordinary backpropagation, but the circuit to calculateffseis
much more efficient: It can approximate the learning algorith#?
equations more accurately and as the algorithm requires only
simple operations apart from the activation function, desighs3]
efforts can be put on the electrical specifications of the
hardware (input impedance, speed, noise immunity, etc.) ang
on the general shape of the sigmoid-like activation function.
Further, as the algorithm requires only one “special function,”
it has the potential of very high accuracy through reuse of this
function block.

Regarding optical implementations of gradient descent like
learning, we would expect NLBP to offer similar advantages
over normal backpropagation as in electronic implementatio==
(cf. [14]).

VI.

A new family of learning algorithms have been derivei
that can be thought of as “nonlinear gradient descent” ty]
algorithms. For appropriate values of the parameters they ¢ _

CONCLUSION
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