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We have developed reliability scores for five widely used membrane
protein topology prediction methods, and have applied them both on a
test set of 92 bacterial plasma membrane proteins with experimentally
determined topologies and on all predicted helix bundle membrane
proteins in three fully sequenced genomes: Escherichia coli, Saccharomyces
cerevisiae and Caenorhabditis elegans. We show that the reliability scores
work well for the TMHMM and MEMSAT methods, and that they allow
the probability that the predicted topology is correct to be estimated for
any protein. We further show that the available test set is biased towards
high-scoring proteins when compared to the genome-wide data sets, and
provide estimates for the expected prediction accuracy of TMHMM across
the three genomes. Finally, we show that the performance of TMHMM is
considerably better when limited experimental information (such as the
in/out location of a protein’s C terminus) is available, and estimate that
at least ten percentage points in overall accuracy in whole-genome predic-
tions can be gained in this way.
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Introduction

It is estimated that some 20–25% of all open
reading frames (ORFs) in fully sequenced genomes
encode integral membrane proteins.1 Strikingly,
however, considerably less than 1% of all 3D
protein structures deposited in the Protein Data
Bank2 are of membrane proteins. Theoretical
structure prediction methods are thus of particular
importance for membrane proteins. Most current
methods in this field do not deal with predicting
the 3D structure, but rather try to predict the most
likely topology of the protein, i.e. the in/out
location of the N and C termini relative to the
membrane, and the number and positions of the
membrane-spanning regions. Topology infor-
mation can be generated experimentally by
different approaches such as gene fusion, proteo-
lytic digestion in situ, antibody binding, and
chemical modification. A good topology model is
a necessary prerequisite for experimental struc-
ture–function studies and can be used as a starting
point for attempts to model the 3D structure.

From a structural point of view, there are two
major groups of integral membrane proteins: the

helix bundle proteins, in which one or several
a-helices span the membrane, and the b-barrel
proteins, in which eight or more anti-parallel trans-
membrane b-strands form a closed barrel. The
b-barrel membrane proteins have so far been
found only in the outer membranes of Gram-
negative bacteria, mitochondria, and chloroplasts,
whereas the a-helical membrane proteins are
present in all types of membranes. Here, we con-
sider only methods for predicting the topology of
helix bundle membrane proteins.

The best current topology prediction methods
are claimed to predict the correct topology for
some 70–85% of all proteins, although, as will be
shown below, this is an overestimate. Rather, we
estimate an overall prediction accuracy of 55–60%
correctly predicted topologies when entire pro-
teomes are analyzed. Importantly, none of the
most widely used methods (except PHD, see
below) provides any estimate of the reliability of a
given prediction, i.e. some measure of whether the
topology of a particular protein is more or less
likely to be correct than average.

In this study, we have tried to construct useful
reliability scores for five widely used topology
prediction methods: TMHMM,1 HMMTOP,3

MEMSAT,4 PHD5 and TopPred.6 The goal has
been to use these scores to compare performance
characteristics on a test set of proteins with
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experimentally determined topologies with per-
formance characteristics on three complete gen-
omes, Escherichia coli, Saccharomyces cerevisiae and
Caenorhabditis elegans, and to assess to what extent
limited, easily obtainable experimental topology
information can be used to improve the theoretical
predictions.

Results

Construction of reliability scores

Judging by published bench-marking studies,
TMHMM, HMMTOP and MEMSAT seem to have
the best overall performance characteristics of the
available topology prediction programs.7,8 Two
less well performing but widely used methods,
PHD and TopPred, have been included for com-
parison. Each method is described below in some
detail, together with a discussion of the reliability
scores that we have constructed from the raw out-
put from each program.

TMHMM

TMHMM is based on a hidden Markov model
with seven types of states (helix core, helix caps
on either side of the membrane, short loop on cyto-
plasmic side/inside, short and long loop on non-
cytoplasmic side/outside, and a globular domain
state). Each type of state has a probability
distribution over the 20 amino acids that have
been estimated from membrane proteins with
experimentally known topologies. TMHMM out-
puts the most probable topology of the protein
given the model. The output is a labelled sequence
of the three classes i (inside or cytoplasmic), h
(helix) and o (outside or extra-cytoplasmic) that
obeys the “biological grammar” that a helix must
be followed by a loop and that inside and outside
loops must alternate. Posterior probabilities for
being in the three classes ( p(i), p(h), and p(o)) are
calculated for every residue in the sequence. We
have constructed three different reliability scores
(S1–S3) for TMHMM (see Methods).

S1: The mean posterior probability of the
labelled sequence. A high mean posterior prob-
ability indicates that most of the residues have a
high probability for their assigned classes and
thus that the overall prediction might be con-
sidered reliable. The posterior probability values
for each residue are calculated as described.1 A
possible shortcoming of this score is that a small
region with low probabilities embedded in a
long sequence with generally high scores will
not greatly affect S1, even though it indicates an
uncertainty in the prediction.

S2: The minimum posterior probability in the
sequence of labelled residues. A low S2 score
indicates that there is at least one part of the pro-
tein where the prediction is doubtful. Since the

probability values close to the borders between
different classes often are low, even though the
exact point of transition between one class and
another generally makes no difference to the
overall topology, we mask out a small number
of residues (three, five, seven, nine) on each side
of each border before locating the minimum
probability value. For the score evaluation pre-
sented below, we masked out nine residues at
each side of each border; the results are essen-
tially the same in the whole interval three to
nine masked residues (data not shown).

S3: The quotient p(best topology)/p(all possible
topologies), calculated after a masking step as
described below. The two probability values are
included in the standard TMHMM output,
where p(best topology) is calculated with the
N-best algorithm and p(all possible topologies)
is calculated with the forward algorithm, as
described.1 A quotient close to 1 implies that the
best path through the model (i.e. the predicted
topology) is much more probable than all
alternative paths (i.e. all other topologies).
TMHMM can generate a list of several high-
scoring paths where the top ones frequently
have very similar topologies (corresponding to
shifts of one or a few residues at the borders
between different classes that do not change the
overall topology). Since the exact borders
between the classes are not generally known
even for the experimentally determined top-
ologies, it is reasonable to mask out some
residues (we have used ten) on each side of a
class border and consider all topologies com-
patible with the “best” topology after masking
as the same prediction. We thus sum the prob-
abilities for all paths that give the same topology
prediction after masking as the best path before
dividing by p(all possible paths) as obtained
from the raw output.

HMMTOP

HMMTOP is a hidden Markov model with five
states (inside loop, inside helix tail, helix, outside
helix tail and outside loop). For a given amino
acid sequence it finds the most probable path
through the model. Instead of taking into account
only the absolute amino acid composition in the
separate parts of the protein, it searches for the
combination of states that gives the highest differ-
ence in the amino acid distributions. The idea is
that a switch in the topology should be reflected
in a large amino acid distribution change (maxi-
mum divergence). In the raw output, numbers are
given for the entropy of the best path (i.e. the
most probable topology) and the entropy of the
whole model. We have used the difference in
entropy (i.e. entropy of best path 2 entropy of
model) as a measure of the reliability. The smaller
the difference, the better the best path represents
the whole model, and the more likely to be correct
the predicted topology should be.

736 Topology Prediction



MEMSAT

MEMSAT is based on a model with five struc-
tural states (inside loop, inside helix end, helix
middle, outside helix end, outside loop). Each
state is associated with a statistical table (log likeli-
hoods) of the frequency of the 20 amino acids. The
tables have been constructed from membrane
proteins of known topologies and treat single- and
multispanning membrane proteins separately. A
dynamic programming algorithm solves the
problem of finding the optimal state assignments
for the query sequence. The algorithm computes
scores for all possible topologies starting with one
helix, and then increases the number of helices
one at a time until the scores become too low. The
output produces a list of topologies representing
all possible number of TM helices (in both orien-
tations) and their scores. The topology with the
highest score is the final prediction. To assess the
reliability, we have calculated the difference in
scores between the best and the second best predic-
tion. If the difference is high, the top-scoring
topology should be more likely to be correct.

PHD

PHD is a general tool for predicting secondary
structure of proteins, and the PHDhtm routine is
the part handling membrane proteins. It is
designed to use information from homologous
proteins. The first step in the method is a BLAST
search9 against the SWISSPROT database.10 A
multiple sequence alignment of the hits is con-
structed and a neural network then estimates the
preference for each residue to be in a trans-
membrane helix or in a loop. The highest-scoring
putative transmembrane segment is used in a
second step to decide whether the protein is a
helix bundle integral membrane protein. The third
step is a dynamic program algorithm that finds
the optimal number and locations of trans-

membrane regions (the model). Finally, the overall
orientation of the protein in the membrane is pre-
dicted by applying the “positive-inside” rule.11,12

PHDhtm is the only method in our study that
automatically provides some sort of reliability
measure. In the output, there is one reliability
index for the model (i.e. for the number and
locations of the transmembrane regions) that is
based on a comparison between the two highest-
scoring models, and a second reliability index for
the orientation that is proportional to the charge
difference between the outside and inside parts of
the protein. Both indices range from 0 (low) to 9
(high). However, the two indices are not combined
into a single reliability score for the overall top-
ology. We have evaluated both the two existing
indices and the mean value of the two indices as
reliability scores.

Because the other four methods only use infor-
mation in a single query sequence (and not infor-
mation from homologous sequences) we decided
to run PHDhtm in single-sequence mode for the
main analysis. However, we have also used the
multi-sequence mode for comparison.

TopPred

TopPred was the first topology prediction
method that combined hydrophobicity analysis
and the positive-inside rule. It first calculates a
standard hydrophobicity profile for the query
protein. Peaks above an upper cut-off (i.e. regions
rich in hydrophobic residues) are considered to be
confident transmembrane helix predictions
whereas peaks between the upper and a lower
cut-off are regarded as putative transmembrane
helices. Consequently, several topologies can be
constructed with or without the putative
helix/helices. Out of these possible topologies, the
one with the largest difference in the number of
positively charged amino acids between the two

Figure 1. Relation between test
set cumulative coverage and the
fraction of correct topology predic-
tions for five different prediction
methods over a set of 92 prokaryo-
tic membrane proteins with experi-
mentally determined topologies.
TMHMM S3 score, filled squares;
MEMSAT, open squares; HMMTOP,
open circles; PHDhtm (web version,
multi-sequence mode), filled circles;
PHDhtm (single-sequence mode),
filled triangles; TopPred, open tri-
angles (for TopPred, many
sequences did not generate more
than one topology. For those cases
no reliability score could be calcu-
lated, which explains the total
TopPred coverage of only 36%).
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sides of the membrane is given as the best predic-
tion. We have calculated a reliability score as the
difference between the charge-difference values
for the two top-scoring topologies. If no putative
helices are identified from the hydrophobicity
plot, only one topology is predicted, and thus no
reliability score can be calculated in such cases.

Reliability scores correlate with
prediction accuracy

The five methods and their corresponding
reliability scores described above were evaluated
over a previously collected test set (see Methods)
composed of 92 prokaryotic helix bundle mem-
brane proteins with experimentally determined
topologies. For each method and score, the 92 top-
ology predictions were ranked from high to low
scores. The results are summarized in Figure 1 in
the form of a plot of prediction accuracy versus
cumulative coverage of the test set.

As is clear from this Figure, TMHMM and
MEMSAT have the best prediction characteristics
according to this test (for TMHMM, only the S3
score is shown, as the S1 and S2 scores yield essen-
tially the same results). For both methods, ,50% of
the predictions have reliability scores correspond-
ing to a prediction accuracy of ,90%, and ,70%
of the proteins have scores corresponding to a
prediction accuracy ,80%. If the entire test set is
considered (100% coverage), the prediction
accuracy is 65–70%.

For HMMTOP, PHDhtm, and TopPred, our
definitions of reliability scores do not seem very
useful. We repeated the PHDhtm analysis by run-
ning the web version in multi-sequence mode,
which improved the overall accuracy on the
whole test set from 51% to 63%, but did not
improve the discrimination between good and bad
predictions based on the reliability score. The two
individual reliability indices given by PHDhtm
were no better than the mean reliability score
shown in the Figure (data not shown).

Interestingly, the top-scoring proteins are, to a
significant extent, different for the two best
methods, TMHMM and MEMSAT. By simply com-
bining the two scores as shown in Figure 2
(TMHMM score S3 . 0.7 and/or MEMSAT score
.4) we reach a prediction accuracy of ,95% for
the ,60% top-scoring proteins in the test set. How-
ever, this apparent improvement needs to be
confirmed on a larger data set. A more elaborate
scheme for combining different topology predic-
tion methods has been presented,8 and it is
possible that one can find “optimized” combi-
nations of reliability scores that perform better
than the individual scores discussed here.

Proteins with known topology constitute a
biased set compared to full-size proteomes

The development and evaluation of topology
prediction methods is, to some extent, limited by

the available experimental data, and a significant
fraction of the proteins in our test set have been
used in the original construction of the different
prediction methods. This has made it difficult to
obtain realistic estimates of the expected perform-
ance characteristics when the methods are applied
to previously uncharacterized proteins, and differ-
ent authors come to different conclusions on this
point.7,8 From a couple of recent studies,13,14 it is
clear, however, that the available test sets of pro-
teins with experimentally determined topologies
is biased, although the extent of the bias is
unknown.

The reliability scores constructed here make it
possible to address this question using whole-
genome data. We have therefore calculated the
TMHMM S3 score distributions for the predicted
helix bundle membrane protein proteomes of one
prokaryotic, E. coli15 and two eukaryotic,
S. cerevisiae16 and C. elegans,17 organisms, and have
compared these distributions to the distributions
obtained for the test set.

As TMHMM has been shown to be able to dis-
criminate between soluble and integral membrane
proteins with very great accuracy,1 the three mem-
brane protein proteomes were defined as all ORFs
for which TMHMM predicts at least two trans-
membrane helices. Predicted single-spanning
proteins were not included, since cleavable signal
peptides are often predicted as transmembrane
helices, thus erroneously identifying many
secreted proteins as single-spanning membrane
proteins. Even so, an unknown proportion of the
membrane proteins identified in this way will
contain cleavable signal peptides, in contrast to
the test set proteins, which all lack cleavable signal

Figure 2. TMHMM S3 and MEMSAT scores for 92 test
set proteins. Open circles, both predictions correct; filled
circles, both predictions false; open squares, TMHMM
prediction correct, MEMSAT prediction false; filled
squares, TMHMM prediction false, MEMSAT prediction
correct.
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peptides. This may reduce the S3 scores slightly for
some of the predicted proteins, but we consider it
unlikely that this is enough to explain the
differences between the proteome sets and the test
set reported below.

The results are presented in Figure 3, where the
percentages of membrane proteins are plotted for
different score intervals. To be able to compare the
score distributions for the three proteomes with
the test set, we removed all single-spanning
sequences in the test set, ending up with 76
sequences and a TMHMM accuracy for this
reduced set of 63%. The most striking result is that
there is a much larger fraction of high-scoring
proteins in the test set compared to the three
proteomes, and thus that the overall prediction
accuracy of ,66% reported in Figure 1 is a clear
overestimate. To obtain a more realistic estimate,
we first derived an empirical relation between the
prediction accuracy and the S3 score by dividing
the 92 test set predictions, ranked from high to
low scores, into four equal-size groups and then
plotting the average prediction accuracy in each
group against the mean score for that group,
Figure 4(A). The accuracy/score relation is
reasonably well described by the straight line
A ¼ 80 £ S3 þ 20. Using this relation, we calcu-
lated the expected A-values for all proteins in the
respective membrane protein proteomes, which is
plotted against the cumulative coverage in
Figure 4(B). As a control, we plotted the real mean
accuracy and the calculated accuracy (A) for the
test set; the two latter curves agree well and we
thus conclude that the expected accuracy A is a
reasonable representation of the real data. The
mean prediction accuracies estimated in this
way for the whole proteomes (56% for E. coli, 53%
for S. cerevisiae and 59% for C. elegans) are sig-
nificantly lower than the ,66% obtained for the
test set, suggesting that the widely quoted predic-

tion accuracies of 70–85% are serious
overestimates.

There are several possible explanations for the
test set bias. First, even though jack-knife pro-
cedures were used in the development of the
prediction methods, there are many subtle ways
in which the methods may have been overtrained.
It is quite likely that the proteins for which experi-
mental topologies have been reported have some
characteristics such as unusually hydrophobic
transmembrane segments that simultaneously
simplify both experimental mapping and predic-
tion. There are many families of membrane
proteins for which no experimental topology is
available and which have thus not been seen by
the prediction methods.

Looking more carefully at the results for the
individual genomes (Figure 3), it is interesting to
note that S. cerevisiae has a particularly large frac-
tion of low-scoring proteins, while C. elegans and
E. coli have more similar score distributions. We
did not expect C. elegans to have the greatest pre-
dicted accuracy, since it is a eukaryote and the
relationship A ¼ 80 £ S3 þ 20 was derived from pro-
karyotic proteins. However, we suspected that the
family of 7TM-receptors, known to be exception-
ally large in C. elegans,18 might have contributed to
the results. We therefore identified all C. elegans
proteins predicted to have seven transmembrane
helices and an extracellular N terminus (985 out of
totally 4059) and analyzed the 7TM and non-7TM
sets separately. The 7TM set was found to have a
score distribution similar to that of the test set,
whereas the score distribution for the remaining
C. elegans membrane proteins almost coincided
with that of E. coli (data not shown). Finally, the
combination of the TMHMM S3 and MEMSAT
scores discussed above (Figure 2), gave the follow-
ing coverages for the three proteomes: 45% for
E. coli, 46% for S. cerevisiae and 56% for C. elegans,

Figure 3. TMHMM S3 score
distributions. The fraction of all
predicted membrane proteins with
two or more TM helices in each
genome or in the test set (76
proteins) and for each score interval
is shown.
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which should be compared to the 60% coverage of
the test set.

Inclusion of limited experimental information:
a strategy for large-scale topology mapping

Given the rather low estimates for the expected
mean prediction accuracy over full-size proteomes
discussed above, it is clear that topology predic-
tions, in general, provide only a rough guide to
the true topology of a protein. On the other hand,
the reliability scores presented here can be used to
reduce considerably the necessary experimental
work required to reach a satisfactory level of pre-
diction accuracy.

We have shown that limited experimental infor-
mation such as a determination of the in/out
location of the C terminus of a protein can be used
in conjunction with topology prediction to rapidly
provide a very reliable topology model, at least in

certain cases.19 With the introduction of reliability
scores, it is now possible to extend this strategy to
entire proteomes. The basic TMHMM algorithm
allows one to fix the class-assignment for any pos-
ition in the sequence by setting the probability for
a position to belong to a certain class to 1.0 a priori.
If the C-terminal residue of each protein in the test
set is assigned to its experimentally known class,
the relation between accuracy and coverage
becomes much more favourable and the overall
mean accuracy increases from 66% to 77% (Figure
5(B)). Similarly, if the N terminus is fixed, the over-
all mean accuracy increases to 79%, and if both
termini are fixed it reaches 88% (data not shown).
Again, there is an approximately linear relation-
ship between the accuracy and the S3 score; with a
fixed C terminus, the relation is A c ¼ 70 £ S3c þ 30
(data not shown).

Finally, we tried to estimate how much the pre-
diction accuracy across the E. coli, S. cerevisiae and

Figure 4. Expected performance
of TMHMM over all predicted
membrane proteins with two or
more TM helices in each genome.
(A) Mean fraction of correctly pre-
dicted proteins versus the mean
TMHMM S3 score for each quartile
of the test set of 92 proteins. The
least-squares fit is given by
A ¼ 80 £ S3 þ 20, where A is the
expected accuracy (i.e. the prob-
ability that a prediction with a
given S3 score is correct). (B) Esti-
mated relation between cumulative
coverage and the fraction of correct
topology predictions for the test set
of 92 proteins and for all predicted
membrane proteins with two or
more TM helices in each genome.
Test set (original data), open circles;
test set (calculated data), filled cir-
cles; C. elegans, filled triangles;
E. coli, open squares; S. cerevisiae,
filled squares.
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C. elegans membrane protein proteomes would
improve if the location of each protein’s C termi-
nus was known. To this end, we used the test set
to measure the difference in S3 score, DS3c,
between the score obtained with the C terminus
fixed and the score obtained in the absence of any
experimental information (DS3c ¼ S3c 2 S3) and
plotted DS3c versus the probability value for the
location of the C-terminal residue obtained in the
absence of experimental information, p(last aa), i.e.
the probability value for the assigned class of the
last amino acid in the sequence (Figure 5(A)).
Although the data are rather scattered, there is a
linear trend described by DS3c ¼ 20.57 £ p(last
aa) þ 0.57. In other words, the smaller the value of

p(last aa), the larger is the mean increase in the S3
score when the C-terminal residue is assigned to
its known class. This expression was used for esti-
mating the increase in S3 score for all proteins in
the three proteomes from which the estimated S3c

scores can be calculated; S3cp ¼ S3 þ DS3c, assum-
ing that the C-terminal location is known. The
expected accuracy, A cp, was then calculated from
the expression for A c above. The results are shown
in Figure 5(B). The estimated increase in overall
accuracy for the proteomes is from 56% to 67% for
E. coli, from 53% to 67% for S. cerevisiae, and
from 59% to 71% for C. elegans. It should be
emphasised that these numbers are only rough
estimates, but they nevertheless suggest that

Figure 5. Influence of experimen-
tal information on TMHMM per-
formance. (A) Relation between
increase in S3 score for the test set
of 92 proteins with the C-terminal
residue fixed to its experimentally
known location and the value of
p(last aa); DS3c ¼ 20.57 £ p(last
aa) þ 0.57. (B) Relation between
cumulative coverage and fraction
of correct predictions. Observed
accuracy for the test set with fixed
C-terminal locations, filled circles;
and with fixed N-terminal
locations, open circles. Expected
accuracy, A cp, for the three genomes
assuming that the C-terminal
location is known: C. elegans, filled
triangles; E. coli, open squares;
S. cerevisiae, filled squares.
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prediction performance would improve signifi-
cantly if C-terminal mapping data were available.

Generally applicable methods for determining
the location of the C-terminal end of a protein on
the basis of either reporter fusions or engineered
acceptor sites for N-linked glycosylation exist for
E. coli, S. cerevisiae and mammalian proteins,20 –22

and we have shown that such methods can be
used on a relatively large scale (our unpublished
work). On the basis of TMHMM-predictions,1 we
have estimated that the membrane protein pro-
teome of E. coli consists of 769 proteins with two
or more transmembrane helices, and that of
S. cerevisiae of 847 such proteins. The results pre-
sented above suggest that highly reliable topology
models for a majority of these proteins should be
obtainable from a simple experimental determi-
nation of the C-terminal location.

Discussion

Membrane protein topology prediction is an
important area in contemporary bioinformatics,
and provides a useful starting point for experimen-
tal studies of membrane proteins. While the overall
performance of different topology prediction
methods has been much discussed lately,7,8,13 essen-
tially no work has been done trying to estimate the
reliability of individual predictions. Here, we have
constructed simple reliability scores for five widely
used methods, TMHMM, HMMTOP, MEMSAT,
PHDhtm and TopPred, and have applied them to
a test set of 92 prokaryotic proteins with experi-
mentally determined topologies and to the full-
size membrane protein proteomes from E. coli,
S. cerevisiae and C. elegans.

For TMHMM and MEMSAT, there is a good cor-
relation between the reliability scores we have
defined and the expected accuracy of a prediction.
For both methods, ,50% of the predictions have
reliability scores corresponding to a prediction
accuracy of ,90%, and ,70% of the proteins have
scores corresponding to a prediction accuracy of
,80% over the test set. For the remaining three
methods, we were unable to derive useful
reliability scores.

We have further used the TMHMM reliability
score to assess the degree of bias in the test set as
compared to the predicted membrane protein pro-
teomes of E. coli, S. cerevisiae and C. elegans. In con-
formity with the results of two recent studies,13,14

we find that the test set is biased towards high-
scoring proteins, and we estimate that only some
53–59% of all predicted topologies for these pro-
teomes are correct, compared to 63% for the test
set when only proteins with two or more trans-
membrane helices are considered (or 66% for the
whole test set). The reliability scores make it
possible to estimate the likelihood that a given pre-
diction is correct, allowing experimental topology
mapping efforts to be focused on proteins with
low reliability scores.

Finally, we have tried to estimate the expected
improvement in prediction accuracy if the in/out
location of the C terminus of every protein in a
proteome was known from experimental data,
since relatively rapid methods for such determi-
nations are now available. For all three proteomes,
we find that TMHMM will predict the correct top-
ology for ,70% of all membrane proteins, given
that the C-terminal location is known. Again, the
likelihood that a given prediction is correct can be
estimated from the reliability score.

In summary, we describe new reliability scores
for TMHMM and MEMSAT, two of the currently
best-performing topology prediction methods, that
make it possible to estimate the likelihood that a
given prediction is correct and that can be used in
conjunction with limited experimental information
to provide high-quality topology models for entire
proteomes.

Methods

Prediction methods

TMHMM2.0,1 HMMTOP2.0,3,23 MEMSAT version 1.8,4

PHDhtm version 1998.015 and TopPred version 1.06

were used in single-sequence mode and with default
parameter settings. PHDhtm was also run in its multiple
sequence alignment mode on the website.†

Definition of reliability scores

TMHMM S1 ¼ ðp1ðlabelÞ þ p2ðlabelÞ þ · · · þ pNðlabelÞÞ=N

where N is the sequence length and pi(label) is the
posterior probability for the assigned class (label ¼ i, o
or h) for residue i.

TMHMM S2 ¼ min½p1ðlabelÞ; p2ðlabelÞ;…; pNðlabelÞ�

TMHMM S3 ¼ pðbest topologyÞ=pðall possible topologiesÞ

To calculate p(best topology) we first identify all high-
scoring predictions that are compatible with the highest-
scoring one by masking ten residues on either side of
each class border. All predictions that have the same
class assignments as the highest-scoring one after mask-
ing are considered as being the same, and p(best top-
ology) is the summed probabilities (as given by
TMHMM) for these predictions. These individual prob-
abilities as well as p(all possible topologies) are calcu-
lated as described.1

HMMTOP : score ¼ entropyðbest pathÞ2 entropyðmodelÞ

MEMSAT : score ¼ scoreðbest topologyÞ

2 scoreðsecond best topologyÞ

PHDhtm : score ¼ ððindexðmodelÞ þ indexðorientationÞÞ=2

† http://cubic.bioc.columbia.edu/predictprotein/
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TopPred : score

¼ D positive chargesðbest topologyÞ

2 D positive chargesðsecond best topologyÞ

Definition of correct predictions

A predicted topology is considered correct if it has the
correct number of transmembrane segments and the cor-
rect location of the N terminus.

Data sets

The test set used is a collection of 92 prokaryotic helix
bundle membrane proteins with experimentally known
topologies.24 We selected proteins belonging to “trust
levels” A, B and C, but excluded level C proteins with
only partial topologies. We removed all sequences that
were annotated to contain an N-terminal signal or a
pro-peptide.

The highest level of sequence identity (as determined
by ClustalW25 alignments) between any two proteins in
the test set was 59%, and 71 sequences had less than
30% mutual identity as determined by the Hobohm 2
algorithm.26

For the proteome analysis, all predicted ORFs from
three fully sequenced genomes, E. coli†, S. cerevisiae‡
and C. elegans§, were downloaded.

To extract the membrane proteins, TMHMM was run
on all ORFs in the respective genomes and all proteins
with two or more predicted transmembrane segments
were retained. Proteins with a single predicted trans-
membrane segment were not included, since a consider-
able but unknown fraction of these segments are
cleavable signal peptides rather than transmembrane
helices.1 The numbers of proteins analyzed were 749 for
E. coli, 847 for S. cerevisiae and 4059 for C. elegans.
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