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BIOINFORMATICS

MicroRNA transfection and AGO-bound CLIP-seq data

sets reveal distinct determinants of miRNA action
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1The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
2The Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark

ABSTRACT

Microarray expression analyses following miRNA transfection/inhibition and, more recently, Argonaute cross-linked immuno-
precipitation (CLIP)-seq assays have been used to detect miRNA target sites. CLIP and expression approaches measure differing
stages of miRNA functioning—initial binding of the miRNP complex and subsequent message repression. We use nonparametric
predictive models to characterize a large number of known target and flanking features, utilizing miRNA transfection, HITS-
CLIP, and PAR-CLIP data. In particular, we utilize the precise spatial information provided by CLIP-seq to analyze the predictive
effect of target flanking features. We observe distinct target determinants between expression-based and CLIP-based data.
Target flanking features such as flanking region conservation are an important AGO-binding determinant—we hypothesize that
CLIP experiments have a preference for strongly bound miRNP–target interactions involving adjacent RNA-binding proteins that
increase the strength of cross-linking. In contrast, seed-related features are major determinants in expression-based studies, but
less so for CLIP-seq studies, and increased miRNA concentrations typical of transfection studies contribute to this difference.
While there is a good overlap between miRNA targets detected by miRNA transfection and CLIP-seq, the detection of CLIP-seq
targets is largely independent of the level of subsequent mRNA degradation. Also, models built using CLIP-seq data show strong
predictive power between independent CLIP-seq data sets, but are not strongly predictive for expression change. Similarly,
models built from expression data are not strongly predictive for CLIP-seq data sets, supporting the finding that the determinants
of miRNA binding and mRNA degradation differ. Predictive models and results are available at http://servers.binf.ku.dk/antar/.
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INTRODUCTION

MicroRNAs (miRNAs) exert their post-transcriptional reg-
ulatory function primarily by destabilizing messenger RNAs
(Guo et al. 2010) and also suppressing protein translation, or
a combination of both mechanisms (Flynt and Lai 2008).
Numerous sequence features have been proposed as impor-
tant for miRNA–target interaction. In metazoa, miRNAs
commonly form imperfect base pairing to 39 untranslated
regions (UTRs) of target genes as part of a complex with
Argonaute protein (micro-ribonucleoprotein [miRNP]), al-
though targets in the coding regions are also found. Often
there is almost perfect base pairing to the seed of the
miRNA, which is defined as bases 2–8 from the 59 end of

the mature miRNA (Lai 2002; Enright et al. 2003; Lewis et al.
2003; Doench and Sharp 2004; Rajewsky and Socci 2004).
This seed pairing has been considered the key factor in
miRNA�target interaction and shows strong correlation with
expression changes (Lim et al. 2005; Grimson et al. 2007;
Nielsen et al. 2007). Seed sites are short and are likely to occur
often by chance and, therefore, computational prediction us-
ing seed-matching alone suffers from a relatively high number
of false-positive predictions. The most common way to re-
duce this problem has been to require evolutionary conser-
vation of target sites (Krek et al. 2005; Lewis et al. 2005;
Stark et al. 2005), because conserved target-binding sites are
thought more likely to be biologically functional. Addition-
ally, the presence of multiple sites in a 39 UTR that is targeted
by one or multiple miRNAs has been shown to affect message
repression (Enright et al. 2003; Doench and Sharp 2004;
Grimson et al. 2007; Hon and Zhang 2007; Saetrom et al.
2007).

However, seed pairing is not the only determinant of
miRNA targeting. It has been shown that the sequence context
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is important for functional target sites (e.g., Didiano and
Hobert 2006). MicroRNA targets have a preference to
reside in AU-rich regions (Grimson et al. 2007) or AU-rich
39 UTRs (Robins and Press 2005a). There is also evidence
that miRNAs may preferentially target genes with longer
39 UTRs (Sandberg et al. 2008) and target near the ends of
39 UTRs (Gaidatzis et al. 2007; Grimson et al. 2007; Majoros
and Ohler 2007), although this interacts with the dynamic
and tissue-specific nature of UTR length due to alternative
polyadenylation (Sandberg et al. 2008). Mutational studies
of miRNA–target interactions show that contextual features
flanking the target site can have substantial effect. For ex-
ample, in a study of lys-6 miRNA in Caenorhabditis elegans
Didiano and Hobert (2008) found that regions immediately
downstream of the target site are important for enabling
miRNA regulation. Moreover, this effect was independent of
general flanking AU-enrichment. It is hypothesized that such
sites could represent binding sites for modulating factors
such as RNA-binding proteins (RBPs) (Didiano and Hobert
2008; Jacobsen et al. 2010). In addition, thermodynamic
stability of the miRNA–mRNA interaction has been used to
identify target sites (Enright et al. 2003; Lewis et al. 2003;
John et al. 2004; Rehmsmeier et al. 2004; Krek et al. 2005).
Target accessibility as measured by the free-energy cost
required to open the target site has also proven useful in
recognizing functional target sites (Robins and Press 2005b;
Kertesz et al. 2007; Long et al. 2007; Obernosterer et al. 2008;
Tafer et al. 2008).

The knowledge of miRNA target-site determinants has
been largely obtained from measurements of expression
changes after miRNA transfection. Lim et al. (2005) first
used a miRNA transfection microarray experiment to detect
the down-regulation of a large number of transcripts after
overexpressing miRNAs, and other studies followed (e.g.,
Wang and Wang 2006; Grimson et al. 2007; Linsley et al.
2007). Similarly, miRNA knock-down followed by mRNA
expression measurements has been used (e.g., Krützfeldt
et al. 2005; Frankel et al. 2007). Proteomics experiments
further show that for a substantial number of genes, such
mRNA destabilization is highly correlated with the resultant
protein repression (Vinther et al. 2006; Baek et al. 2008;
Selbach et al. 2008; Guo et al. 2010).

Two recent studies (Hausser et al. 2009; Hong et al. 2009)
have compared miRNA target features determined from such
expression analyses with the results of Argonaute immuno-
purification (RIP-chip) experiments, and noted differences
in the target features. For example, in contrast to earlier
studies which have found that 39 UTR length is increased in
miRNA targets, these studies found that a distinguishing
feature of miRNP binding was short 39 UTR length. These
studies relied upon direct Argonaute pull-down of transcripts
by RNA immunopurification, which requires strongly asso-
ciated RNAs and will miss loosely or transiently associated
miRNPs. More recently, cross-linking with immunoprecip-
itation (CLIP-seq) methods have been used as an assay for

miRNA target sites (Chi et al. 2009)—this method involves
in vivo UV cross-linking of the mRNA and miRNP, immuno-
precipitation, and isolation of cross-linked RNA segments
followed by cDNA sequencing. For example, two recent
CLIP-seq studies—AGO HITS-CLIP (Chi et al. 2009) and
AGO PAR-CLIP (Hafner et al. 2010) methods—were shown
to identify miRNA–target interactions with relatively high
specificity (Chi et al. 2009, Supplemental information). It is
of interest to compare the features of miRNA targets revealed
by these new CLIP-seq techniques to expression-based ana-
lyses to reveal complementary feature determinants in
miRNA targeting, effects of miRNA concentration, and to
highlight possible selection biases in these protocols.

A limitation of previous studies is the restriction of their
analyses primarily to statistical significance, with no measure
of predictive performance of individual features. Although
a feature may be significantly over-represented among target
genes, it does not necessarily follow that it adds power to
prediction of target sites, because such statistical enrichment
is a function of sample size. Using predictive power to
quantify miRNA–target features is informative, as it gives a
direct answer to the importance of the feature and feature
interactions for unseen data. For example, most features ex-
amined in this study also have highly statistically significant
P-values for mean difference between target and nontarget
sets, but their predictive power varies greatly.

In this study, we perform a comprehensive comparison
of miRNA targeting features for expression-based data sets
(mRNA/proteome expression following miRNA transfection/
knock-down) and two CLIP-seq-based methods (HITS-CLIP
and PAR-CLIP). These two types of data highlight two as-
pects of miRNA targeting: initially miRNAs bind to target
sites through a miRNP complex, and subsequently cause
message repression through degradation and/or translational
changes. Accordingly, the expression-based data sets detect
target genes with expression substantially regulated by
miRNAs, while the CLIP-seq data sets detect target genes
bound by one or more miRNPs. These two aspects of
miRNA targeting may reveal, or be determined by, different
miRNA–target features (Hausser et al. 2009). Hausser et al.
(2009) found that target accessibility is associated with
miRNP binding in RIP-chip data, while sequence com-
position, especially U frequency in entire transcripts, is
associated with mRNA degradation. To investigate target
determinants in current CLIP-seq data in comparison to
miRNA transfection data, we defined and analyzed a large
number of target features that may be relevant for miRNA
targeting using both types of data. We used a nonparamet-
ric machine learning method to rank and analyze features
by their predictive power and to investigate multivariable
interactions of feature categories. Specifically, we analyzed
(1) relative importance ranking of individual features, (2)
dependencies and interactions of combinations of categories
of features, and (3) the overall performance of predictive
models trained using these features.
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RESULTS AND DISCUSSION

Comparisons of predictive power reveal differences
in feature importance between expression-based
and AGO CLIP-seq data sets

We compared three data sets for investigating miRNA target
determinants: miRNA transfection data containing mRNA
expression profiles following overexpression of 12 miRNAs
in HeLa cells from Lim et al. (2005) and Grimson et al.
(2007), AGO HITS-CLIP data in mouse brain from Chi et al.
(2009), and AGO PAR-CLIP data in HEK293 cells from
Hafner et al. (2010). These experiments cover more than 50
different miRNAs in various cell lines or tissues. To examine
feature predictive power, we defined positive and negative
sets for all three data sets. For the expression-based data, the
positive set was defined as genes with fold change above a
defined threshold. For the CLIP-seq data, the positive set was
defined as genes with one or more CLIP clusters for the top 20
most-abundant miRNA families (see Materials and Methods).
Negative sets were randomly selected to be equally sized
from genes of low fold change or no CLIP clusters present
(unbound in CLIP-seq), respectively. The features were

organized into six categories by their sequence, structure,
or positional characteristics as listed in Table 1 and illustrated
in Figure 2A, below, with details of the calculations in the
Supplemental methods. The area under ROC curve (AUC)
was used to measure the predictive power, and the Hanley-
McNeil test was used to measure statistical significance of
AUC increases unless otherwise specified (see Materials and
Methods). P-values of significance of AUC differences of a
feature between data sets are shown in Supplemental Table 2.

A practical advantage of CLIP-seq is that it provides not
only transcript-level information on miRNP binding, but
also localizes the target interactions on the 39 UTR. This
spatial information was utilized for the CLIP-seq data sets
to improve the accuracy of estimates of flanking-feature effect
sizes where applicable. For the transfection data sets and
CLIP-seq negative controls where this spatial information is
not available, the best match seed site was used (potential
selection biases in these controls were controlled for statis-
tically, see Materials and Methods).

We first estimated feature importance by training a pre-
dictive model (Random Forest, see Materials and Methods)
and measuring the decrease in predictive power after effec-
tively removing each feature, by randomization of the feature

TABLE 1. miRNA target and contextual features used in this study and their predictive power measured in AUC

AUCa

Category Region Features
miRNA

transfection HITS-CLIP PAR-CLIP

Conservation 70 nt Conservation of flanking region 0.65 0.80 0.76
seed Conservation of seed 0.70 0.80 0.79
target Conservation of entire target sequence 0.69 0.81 0.76

Target complementarity target miRNA–target sequence alignment
score ( John et al. 2004).

0.82 0.75 0.76

seed Seed type, 6-mer, 7-mer-m8, 7-mer-A1, and
8-mer (Grimson et al. 2007)

0.82 0.75 0.74

seed Seed mismatch/GU pairing 0.76 0.76 0.74
out-seed 39 out-seed pairing (Grimson et al. 2007) 0.58 0.52 0.59

39 UTR features 39 UTR 39 UTR length 0.66 0.79 0.77
39 UTR Number of target sites 0.78 0.75 0.73
39 UTR Relative distance to 39 UTR ends 0.56 0.61 0.61
39 UTR Minimum distance to 39 UTR ends 0.60 0.67 0.65

Composition in target site
flanking regions

70 nt Mononucleotide frequencies 0.73 0.65 0.72

70 nt Dinucleotide frequencies 0.71 0.69 0.69
30 nt AU content (Grimson et al. 2007) 0.70 0.63 0.75
70 nt Base compositional entropy 0.63 0.59 0.61

Target free-energy-based
features

target Free-energy loss DDG that indicates target
site accessibility (Kertesz et al. 2007)

0.72 0.68 0.67

target DGduplex miRNA–target hybridization energy 0.67 0.64 0.65
Flanking strand asymmetry 70 nt Folding free-energy difference DG between

two strands; mean, standard deviation,
and 4th moment (Wen et al. 2007)

0.69 0.57 0.56

70 nt Base asymmetry bias, A vs. U and
G vs. C (Wen et al. 2007)

0.64 0.57 0.61

70 nt G+U content (Wen et al. 2007) 0.63 0.54 0.61

aP-values of significance of AUC differences of a feature between data sets are shown in Supplemental Table 2.
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(mean decrease in Gini index). Figure 1A shows the overall
importance ranking of various miRNA–target features (in
decreasing order) for both the miRNA transfection experi-
ments and CLIP-seq experiments. Figure 1B shows the
predictive performance, measured in AUC, of individual
features across each experiment. This univariate feature AUC
was directly calculated from the ordering induced by each
feature (see Materials and Methods).

Amongst the top-ranked features in the miRNA trans-
fection data were, consistent with the previous literature, the
seed-related features (see Table 1): miRNA-target alignment
score, seed type, and number of target sites. In the expres-
sion-based data sets, the AUC heatmap (Fig. 1B) shows that
the top-ranked seed-related features performed consistently
across most miRNA families and spanned different types of
experiments, including mRNA/protein expression follow-
ing miRNA overexpression/inhibition. In contrast, both of
the CLIP-seq data sets showed a different feature impor-
tance ranking, where the conservation features and 39 UTR
length appeared consistently across different miRNA
families to have the strongest discriminability, while
seed-related features ranked relatively lower. In both the
miRNA transfection and CLIP-seq data, the highly ranked
target contextual features included: target-site accessibility,

flanking AU composition/U nucleotide frequency, and
flanking conservation.

Conservation of target site and flanking region are the most
important features in CLIP-seq targets

We examined the discriminability of sequence conservation
measured by average conservation (phastCons score) for seed,
entire target site, and flanking region in all three data sets. In
both the CLIP-seq data sets, the three conservation regions
showed strong discrimination (AUC 0.76–0.81) (Fig. 2B) and
ranked higher than seed site features (see Fig. 1A). In the
PAR-CLIP positive set, for example, 58% of transcripts had
highly conserved seed regions with a conservation score $0.9
compared with only 15% in the negative set (a ratio of 3.9-
fold; P < 1E-15, Fisher exact two-sided test). The enrichment
for highly conserved CLIP clusters was also noted in Chi et al.
(2009) and Hafner et al. (2010). The flanking sequence con-
servation also showed a marked difference in ratio of the pos-
itive set to the negative set (6.6-fold; phastCons score $0.9;
P < 1E-15, Fisher exact two-sided test), as also previously
observed in other studies (Nielsen et al. 2007), suggesting that
the extended flanking region is important for target recogni-
tion. However, these conservation features showed only

FIGURE 1. Feature importance ranking and predictive power for miRNA transfection/inhibition, HITS-CLIP, and PAR-CLIP data sets. (A)
Feature importance rankings were evaluated using the Gini impurity criterion (normalized between 0 and 1) from Random Forest classification
for three data sets, separately. Top 30 features are shown: miRNA transfection data (dark blue, in decreasing order), HITS-CLIP (light blue), and
PAR-CLIP (pink). (B) The heatmap shows the AUCs for the corresponding features across individual data sets and miRNA families (number of 39
UTRs in each data set in brackets). AUCs from high to low are represented by colors from red to white.
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moderate discrimination, with AUC of 0.65–0.70, in the
miRNA transfection data set. The conservation features
increased the overall target predictive power by only 0.2%
(not statistically significant; P = 0.39, Hanley-McNeil test)
when combined with other features in the miRNA trans-
fection data, whereas they substantially improved the pre-
dictive performance by 4.5% (P = 3.2E-6) in the HITS-CLIP
data and by 2.2% (P = 0.01) in the PAR-CLIP data.

The CLIP-seq studies would be expected to preferentially
detect target sites with strong miRNP interactions—these
are a function of not only the miRNA component comple-
mentary to their targets but also the protein component,

with Argonaute binding to the target and flanking regions, so
that features such as flanking conservation become relevant.
We hypothesize that, in addition, other RNA-binding pro-
teins associated in vivo with the miRNP complex and target
flanking regions would be expected to enhance this effect.
RBPs can, by structural changes, make adjacent target sites
accessible (Brodersen and Voinnet 2009). Other associated
RBPs may dynamically inhibit or otherwise modulate the
effect of the target site in vivo (e.g., Kedde et al. 2007)—we
hypothesize that such target sites will be preferentially
detectable by the CLIP-seq protocol, but not necessarily by
single time-point transfection studies. Supplemental Figure 1

FIGURE 2. Predictive power of both individual miRNA-target features and feature combinations. (A) miRNA-interaction features are grouped
into six categories by their sequence, structure, or positional characteristics (listed in the colored box). (B) Barplot shows univariate feature AUC
for the positive set vs. negative sets in miRNA transfection, HITS-CLIP, and PAR-CLIP data sets. The error bars show standard errors of AUC. (C)
Comparison of combined predictive performance for each feature category. AUCs for feature combinations in each of six categories are shown in
bars for all three data sets (leave-one miRNA family-out cross-validation; Random forest classifier). Two additional feature combinations are also
shown: the combination of all flanking features and the combination of all features. All flanking features include flanking nucleotide composition,
target free-energy-based features, flanking strand asymmetry, flanking region conservation, and relative/minimum distance to 39 UTR ends. Bar
colors in B and C have the same color schema as A.
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shows that binding affinity (indicated by the number of
cross-linked miRNPs) is correlated with conservation.

Seed match features are more predictive in the miRNA
expression-based data than AGO CLIP-seq data

In the miRNA transfection data set, a good AUC (0.82) for
both the seed type and alignment score features indicates
that the seed has an important role in identifying highly
repressed miRNA target binding sites, which is consistent
with previous miRNA transfection microarray studies. The
miRNA knock-down data shows qualitatively similar results.
The seed type feature showed a weaker predictive power in
both the HITS-CLIP data (AUC = 0.75 vs. 0.82; P = 4.4E-7,
Hanley-McNeil test) and PAR-CLIP data (AUC = 0.76 vs.
0.82; P = 9.3E-6). For example, for messages in the miRNA
transfection positive set, 72% possessed at least one 7-mer
seed site compared with 55% (P < 1E-15, Fisher exact two-
sided test) in both the HITS-CLIP and PAR-CLIP positive
sets. The miRNA-target sequence alignment score measures
the quality of alignment along the target site, but heavily
weighted around the seed region (John et al. 2004), giving an
estimate of seed binding affinity; this feature similarly shows
weaker discrimination in both CLIP-seq data sets (Table 1).
The presence of multiple sites in miRNA–target interactions
may simultaneously destabilize targeted messages, as ob-
served in other studies. In the miRNA transfection data, this
was confirmed by the multiple-sites feature alone yielding a
good discrimination (AUC = 0.78); but, this feature showed
a weaker predictive power in both the CLIP-seq data sets
(AUC 0.73–0.75; P < 1.5E-5), indicating that this is primarily
a determinant of expression change. Seed mismatch and GU
pairing were one of the lowest ranked features by importance
for both CLIP-seq data, but were higher ranked for miRNA
transfection data (see Fig. 1A). This is consistent with the
finding of Hong et al. (2009) of no enrichment for GU
pairing or mismatches in RIP-chip data.

Transfection studies directly reveal the degradation re-
sponse mechanism of particular miRNAs by manipulating
the mature miRNA levels to high levels, often beyond physi-
ological concentration, and then typically measuring the re-
sponse through fold change at a single time point. Therefore,
the target features highlighted are those most directly in-
volved in mediating this degradation response. For miRNA
knock-down expression studies, miRNA concentration re-
mains at physiological levels. In contrast, CLIP-seq methods
depend on the general interaction of Argonaute and poten-
tially associated RNA-binding proteins, sufficient for cross-
linking, across all endogenous miRNAs at physiological con-
centrations. Therefore, features determining overall miRNP
binding to mRNA targets are highlighted.

To further analyze these differences between expression
and CLIP-seq methods, we constructed a set of miRNA tar-
gets defined using knock-down expression data, and divided
the data by fold change into 10 bins. (The knock-down

expression set was defined by transcripts showing substantial
up-regulation after inhibiting the top 25 miRNAs [>1.2-fold
change] and having 7-mer or better seed match. See Materials
and Methods.) We then plotted the overlap with PAR-CLIP–
identified targets for each bin. Figure 3 shows only a small
association between fold change and detection by PAR-CLIP
(change in proportion of 12.5% from first to last decile by
linear model fitting; P = 0.04, proportion trend test); al-
though, overall, there is large (81%) overlap between
transcripts identified by miRNA inhibition data and those
identified by PAR-CLIP. This is again consistent with the
miRNP-binding determinants as detected by PAR-CLIP
being largely independent of those determining mRNA
degradation fold change response.

The size of the effect of the stochastic interaction of
miRNPs with the target mRNA would be expected to depend
not only on target features of the mRNA–miRNA interaction,
but also on the input concentration of miRNAs. We per-
formed a stratified analysis of the PAR-CLIP data into high
(top 10 highly expressed miRNA families) and low (bottom
10 miRNA families) miRNA expression groups, to determine
the extent to which input miRNA concentrations are associ-
ated with the various features. We observed several differences
between the two groups (Fig. 4A), but the most striking
difference was a large change in AUC of target complemen-
tarity (AUC 0.78 vs. 0.67; P = 2.5E-9) (see Fig. 4B), indicating
higher complementarity targets increasing in importance with
increasing miRNA concentration. Potentially, additional sites
may also be targeted at high miRNA concentration. This
higher discriminability of alignment score and seed type in
the group of highly expressed miRNAs is more similar to the
miRNA transfection studies, whereas these features show
weaker discriminability in the low miRNA expression group.

FIGURE 3. Association of targets detected by PAR-CLIP and targets
detected by knock-down expression, stratified by fold change. The
distribution for each decile of fold change after inhibiting the top 25
miRNAs in HEK293 cells (x-axis) versus the proportion of transcripts
showing at least one PAR-CLIP cluster (y-axis) are plotted. The least-
square fitted line for the proportion is shown.
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This result demonstrates the effect of input miRNA concen-
tration on target determination, and suggests that the high-
input miRNA concentration in the transfection studies con-
tributes to the high AUC of seed features.

39 UTR length has high apparent discriminability
in CLIP-seq data sets

In miRNA transfection data, the average 39 UTR length is
increased in the positive set compared with that in the

negative set (1979 vs. 1376 bp; P = 7.6E-30, Mann-Whitney-
Wilcoxon test). This is consistent, in direction, with previous
reports that highly expressed transcripts are evolved to pos-
sess shorter 39 UTRs to avoid miRNA targeting (Stark et al.
2005) and targets associated with longer 39 UTRs increasing
the efficacy of target repression (Sandberg et al. 2008). This
is in the opposite direction of the transfection results
reported in Hausser et al. (2009), which, however, were
restricted to a set of shorter 39 UTRs with exactly one seed

FIGURE 4. Comparison of feature predictive power between PAR-CLIP groups of the top-10 and bottom-10 expressed miRNA families. (A) The
heatmap shows the AUCs for the corresponding features across individual data sets and miRNA families. AUCs from high to low are represented
by colors from red to white. (B) Comparison of AUCs for each feature category between the two groups. P-values measure the statistical
significance of AUC differences.
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site, but is consistent with the direction found in the com-
parative genomics data sets in the same study. Due to its
large variance, the 39 UTR length feature only has poor dis-
crimination (AUC = 0.66), which is less than the (corre-
lated) number of sites feature (AUC = 0.78; P = 4.1E-12).
The mean density of target sites per 39 UTR was substantially
increased in the miRNA transfection data (mean, 1.5 targets
per 39 UTR = 0.8 targets per kilobase) compared with the
CLIP-seq data (mean, 1.3 targets per 39 UTR = 0.6 targets
per kilobase for PAR-CLIP), consistent with number-of-sites
being a determinant of expression fold change.

In contrast, the discriminability of 39 UTR length was
strikingly increased in both the HITS-CLIP (AUC = 0.79 vs.
0.66 in transfection data; P = 1E-14) and PAR-CLIP data sets
(AUC = 0.77 vs. 0.66 in transfection data; P = 1.2-10) and
was one of the highest ranked features (Fig. 1A). The
average 39 UTR length of the positive set was much longer
than that of the negative set (2495 vs. 1173 bp, P < 1E-15
for HITS-CLIP; 2745 vs. 1272 bp, P < 1E-15 for PAR-CLIP;
Mann-Whitney-Wilcoxon test) (see Supplemental Fig. 2 for
distributions). This was also noted in Hafner et al. (2010).

It is possible that 39 UTR length is upwardly biased in the
CLIP-seq data: theoretically, a low sensitivity of the CLIP
cross-linking and downstream processing could lead dispro-
portionately to shorter UTRs being missed (as the longer
UTRs with more targets are more likely to have at least one
target cross-linked and detected). To quantify this bias, we
performed a simulation study using a simplified model of the
CLIP-seq process (see Supplemental Fig. 3; Supplemental
Methods) and showed that such an effect varies inversely with
sensitivity and could lead to a bias on the order of AUC 0.1
if sensitivity is low (e.g., 58% sensitivity for low-expression
transcripts in Chi et al. 2009), which is on the order of the
increase in effect size of this feature in CLIP-seq compared
with transfection studies. To examine this further, as CLIP-
seq has been shown to be more sensitive for highly expressed
genes (described in Chi et al. 2009, Supplemental ‘‘Estimates
of false negative rates and sensitivity’’), we stratified the PAR-
CLIP data into mRNAs with high and low expression. The
highly expressed genes showed a lower AUC for 39 UTR
length compared with the low expression genes (Supplemen-
tal Fig. 4), consistent with the predictions of the simulation
model. The results suggest that the large AUC for this feature
in CLIP-seq data may be substantially upwardly biased, and
the AUC determined from the miRNA transfection studies,
which would not be prone to this bias, may be a more ac-
curate estimate of its effect on miRNA targeting.

As noted, surprisingly this result conflicts with the
opposite finding for RIP-chip that was shown to select for
shorter 39 UTRs (Hausser et al. 2009; Hong et al. 2009).
Hong et al. (2009) noted that structural accessibility of target
sites was increased in small UTRs and hypothesized that this
may account biologically for the small message bias of RIP.
However, the correlation of 39 UTR length and IP enrich-
ment from data of another two AGO RIP-chip experiments

(Hendrickson et al. 2008; Landthaler et al. 2008) show
inconsistent results, with one selecting longer UTRs (r =
0.12; P = 0) and another selecting shorter UTRs (r = �0.03;
P = 2.9E-02). The previous results of Stark et al. (2005) and
Sandberg et al. (2008), the positive correlation in the miRNA
transfection data sets, and the inconsistency among RIP data
sets suggest that the analysis based on RIP data could be a
result of experimental selection biases. One intuitive expla-
nation is that the RIP protocol directly immunoprecipitates
messages without fragmentation, whereas the CLIP protocol
fragments the messages after cross-linking, so that small
messages may be more efficiently immunoprecipitated in the
RIP protocol, depending on details of the assay.

Additionally, the minimum distance to the 39 UTR ends
was substantially increased in predictive power in the CLIP
data (AUC 0.65–0.67) compared with the miRNA trans-
fection data (AUC = 0.60; P # 1.5E-7, Hanley-McNeil test),
which is consistent with the importance of this feature in
determining the miRNP binding reported in Hausser et al.
(2009).

Target contextual features are highly predictive in both
miRNA expression-based and AGO CLIP-seq experiments

We combined all flanking features (listed in Table 1)
including the nucleotide composition in flanking regions,
target accessibility, flanking strand asymmetry, flanking re-
gion conservation, and 39 UTR features (excluding 39 UTR
length and number of seed sites features). The combination
of all flanking features in the miRNA transfection data gave a
predictive performance (AUC nearly 0.8) comparable to
target complementarity features (AUC 0.84) (Fig. 2C). For
both the CLIP-seq data sets, the flanking features were also
strongly predictive, with contribution largely by flanking
conservation (flanks vs. seed features: 0.92 vs. 0.78, P = 1.6E-
49 for PAR-CLIP; 0.89 vs. 0.78, P = 2E-25 for HITS-CLIP).

The nucleotide compositions (mono- and dinucleotide
frequencies, and base compositional entropy) were com-
puted on extended 70-bp flanking regions, and AU content
was computed on immediately flanking regions (30 bp, as in
Grimson et al. 2007). In the transfection data set, consistent
with Grimson et al. (2007), AU content ranked relatively
high for the miRNA transfection data (AUC = 0.7). The
nucleotide U frequency (AUC = 0.7) alone gave a predictive
power equivalent to flank AU content (AUC = 0.7). This
flanking U-richness was also recently reported in Hausser
et al. (2009). The flanking U frequency and AU content were
substantially higher in the transfection than in HITS-CLIP
data, consistent with Hausser et al. (2009).

The most striking difference between the HITS-CLIP and
PAR-CLIP features was in flank U frequencies and AU content
(Fig. 2B). While flank AU content and U frequency are
enriched in all data sets, in PAR-CLIP flank AU content was
ranked substantially higher in importance compared with
HITS-CLIP (AUC 0.75 vs. 0.63; P = 2.4E-19) (see Fig. 1A).
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Flank U frequency also showed a similar difference between
the two CLIP data (AUC 0.71 vs. 0.62; P = 7.8E-11). These
differences could be due to the utilization of T-to-C mutations
to identify targets in the PAR-CLIP protocol, which could
potentially lead to a selection bias toward U-rich sequences
as discussed in Hafner et al. (2010). To test this, we first com-
pared U frequency in PAR-CLIP clusters containing T-to-C
mutations with that in PAR-CLIP AGO sequencing read data
as a background (see Materials and Methods). The results
showed that the average U frequency in the clusters containing
T-to-C mutations is significantly higher than that in the
background (36.4% vs. 30.9%, P < 1E-15, two-sided t-test).
To account for potential biological variance, we also tested
whether such U bias would occur in different biological
experiments by showing that the average U nucleotide
frequency in clusters with T-to-C mutation is significantly
higher compared with the background across AGO1–AGO4
experiments (P = 9.8E-3, one sided t-test). We further
performed a stratified analysis, which divided the data into
39 UTRs containing PAR-CLIP clusters with high and low
T-to-C mutation counts (>12 and <2). The AU content of
the 39 UTRs containing high T-to-C mutation clusters
showed a significantly increased AUC compared with those
of 39 UTRs containing low T-to-C mutation clusters (AUC
0.73 vs. 0.69; P = 1.6E-2, Hanley-MacNeil test). The results
are consistent with a positive selection bias toward U-rich se-
quences in the PAR-CLIP protocol, although a negative bias
in HITS-CLIP cannot be ruled out.

The free-energy change is the difference between mini-
mum free energies (MFEs) of miRNA-target hybridization
(DGduplex) and MFE cost needed to make the target site
accessible (DGopen). AU-richness near the target site may be
associated with target accessibility, because A–U base pairs are
less stable than G–C. However, the contribution that the target
accessibility feature makes in determining miRNA target
functionality, and its dependencies, has been debated, partic-
ularly when comparing the two related features: DGduplex

(Chen et al. 2009) and AU content (Grimson et al. 2007).
We tested how reliably such target structural features could dis-
criminate targets from nontargets and the interdependence
between DGduplex and AU content. For the miRNA transfection
data, the discriminative power of DDG provided moderate
support in discriminating target and nontarget sequences in the
expression data (AUC = 0.72) (cf. AUC 0.76 reported in
Kertesz et al. 2007 using different data sets). The MFE of
miRNA–target hybridization, DGduplex, gave a substantially
weaker predictive power than DDG (AUC = 0.67 vs. 0.72 of
DDG; P = 6.8E-3). AU content, DDG, and DGduplex combined
gave an improved AUC of 0.78. The increase in AUC over
individual features was statistically significant (P = 0.017),
suggesting that these features are not redundant. The DDG
feature also ranked highly among the target context features in
both the HITS-CLIP and PAR-CLIP data sets, although they
gave a weaker AUC of 0.68 and 0.67, respectively, inconsistent
with the RIP-chip results of Hausser et al. (2009).

Next, we used a feature (Wen et al. 2007) based on a
structural strand asymmetry between complementary strands
in RNA sequences, occurring because G–U nucleotides
commonly form base pairs, but the corresponding C–A
nucleotides in the complementary strand do not pair, leading
to a minimum free-energy difference between the strands.
This basic asymmetry signal can be used as evidence for the
potential formation of strand-specific RNA structures. For
example, it has also been used in the EvoFold program for
strand orientation prediction (Pedersen et al. 2006). Here, we
examined both mean and higher moment differences in
structural strand asymmetry in 70-nt flanking regions around
the seed (see Materials and Methods). We also calculated the
features (G�U), (A�U), and (G+U) to estimate local com-
positional asymmetry across strands in these regions. The
structural asymmetry feature showed larger AUC (0.69) than
base compositional asymmetry (0.64; P = 8.6E-3), suggesting
that the structural asymmetry was not simply due to com-
positional biases.

For the miRNA transfection data, the combination of
flank base and structural strand asymmetry features led to a
moderate predictive performance (AUC 0.71). This signal
was consistent with potential cis-regulatory structures being
on the same strand and functional at the RNA level. This
feature gave lower results in the PAR-CLIP and HITS-CLIP
data (AUC 0.65 vs. 0.6; P = 6.3E-4).

Comparisons of target-predictive models trained on
miRNA expression-based and AGO CLIP-seq data sets
imply different underlying feature determinants

To measure and compare how well the multivariable
combination of all of the above features predicts miRNA-
target binding, we built a combined probabilistic predictive
model using a Random Forest classifier. A Random Forest
classifier was used, as it is known to perform well on mixed
variable types and heterogeneous data and can reveal non-
linear feature interactions. We trained predictive models on
the miRNA transfection, HITS-CLIP, and PAR-CLIP data
sets separately (Fig. 5A; Supplemental Fig. 5). A leave-one
miRNA family-out cross-validation was used in estimating
the predictive performance of each model (see Materials and
Methods). For the miRNA transfection data set, when the
positive class was defined by an expression fold change
of >1.6-fold down-regulation, most of the sequences were
classified correctly with an AUC of 0.87 for identifying
miRNA targets. For comparison, we also varied the thresh-
olds for defining down-regulation as the response variable,
ranging from 1.3-fold to 1.8-fold (see Supplemental Fig. 6).
As expected, setting lower thresholds for down-regulation
lessened the classification performance, because more noisy
genes with relatively low fold change were included in the
positive class. The results of both the CLIP-seq data showed
a very good predictive performance for identifying miRNA
targets (both AUC = 0.92). Removing the 39 UTR length
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feature, which is possibly affected by experimental biases
(see above), did not affect the overall performance of the
CLIP-seq models. Also, varying the thresholds for defining
the CLIP-seq-positive class did not substantially change
the predictive performance (Supplemental Fig. 6).

As an independent validation of the models, we tested
whether each model trained on different data sets was capable
of detecting miRNA–target interactions on test sets that were

not used in the training. For each model trained on these
three data sets, we compared its predictive performance
against each other as test sets, as well as on two additional
test sets: the pooled proteomics data for five miRNAs that
measured protein changes after overexpressing miRNAs
(protein-OE) and mRNA profiling of knock-down micro-
array experiments for hsa-miR-21 (mRNA-KD-miR21).
The results (Fig. 5A) showed that the model trained on the

FIGURE 5. Comparisons of predictive models trained on miRNA transfection, HITS-CLIP, and PAR-CLIP data sets. (A) The heatmap shows the
predictive performance (measured in AUC) of models using all features, trained and validated on different data sets. Diagonal cells (yellow
framed) show the AUCs for leave-one miRNA family-out cross-validation of the models. Off-diagonal cells show the model trained on the row
data set and tested on the column data set. (B) Comparisons of the correlation of expression change and posterior probability of prediction
generated by the miRNA transfection-trained model (red) and the PAR-CLIP-trained model (blue). The two models were applied to miRNA
transfection and protein-OE data sets without thresholding on fold change. Linear regression lines were fitted to all predicted targets with
posterior probability $0.5 and dash lines are the 95% confidence interval of the fitting. (C) The performance of the model trained on the miRNA
transfection data using all features and, for comparison, several current target prediction programs. All were evaluated on the protein-OE data set.
The ROC curves (red) show the true positive rate (sensitivity) vs. false positive rate (1�specificity) for the positive set (note: fold change threshold
$1.4-fold) vs. the negative set (low fold change) classifications. Short red horizontal lines on ROC curves marked predictions with a FDR limit of
50%, 20%, and 10% (FDR estimation in the Supplemental Materials and Methods), showing the trade-off between sensitivity and specificity.
Colored dots represent maximum sensitivity (percentage of miRNA-target interactions predicted from the positive set) vs. 1�specificity
(percentage of miRNA–target interactions predicted from the negative set) of predicted miRNA–target interactions for each corresponding
prediction program. The CLIP-seq models evaluated on the same data are also shown.
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transfection data set performed very well on the protein-OE
data giving an AUC of 0.86, which is almost identical to the
cross-validation results. However, both the CLIP-seq models
gave a lower AUC (0.8–0.81; P < 3E-5). On the miRNA-KD-
miR21 data, the model trained on transfection data gave an
AUC of 0.81, whereas on this data the HITS-CLIP and PAR-
CLIP models again gave a lower AUC of 0.72 (P = 2.3E-10)
and 0.79 (P = 0.12), respectively.

Note that if the weaker CLIP-seq model predictive perfor-
mance on expression data was simply due to inaccurate CLIP
training data, it would lead to a weak model for predicting
CLIP-seq data in cross-validation as well; however, the results
do not suggest this: In cross-validation the CLIP models can
predict very well (both AUC = 0.92), and the PAR-CLIP
model has good predictive function for HITS-CLIP data and
vice versa (both AUC = 0.88) (Fig. 5A). The finding that the
CLIP-seq models showed a lower prediction performance on
both expression-based proteome and miRNA-inhibition data
than the miRNA transfection model provides support for the
notion that the underlying determinants revealed by CLIP-
seq data, i.e., for miRNP–target binding, differ from those
revealed by miRNA expression-based data, i.e., degree of
degradation. A predictive model trained on a RIP-chip data
set (Hendrickson et al. 2008) showed qualitatively similar
results to the CLIP-seq models, but with substantially lower
performance across all data sets (see Supplemental Table 1),
suggesting a higher specificity for the CLIP-seq protocols.

As posterior probabilities generated from the models
provide an estimate of the confidence in the predictions,
we further tested how well the combination of all features
could infer the degree of target repression (see Fig. 5B).
When predicting both mRNA and protein expression fold
change, the model trained on transfection data showed a
clear linear relationship between posterior probability and
fold change, whereas the model trained on the PAR-CLIP
data showed only a weaker association with expression change
at the mRNA level (slope = �0.19, P < 1E-15 vs. slope = �0.06,
P < 1E-15, respectively) and the protein level (slope = �0.67,
P < 1E-15 vs. slope = �0.17, P = 2.6E-3, respectively). This adds
further support for the finding that determinants of AGO
binding and mRNA down-regulation vary. This is also
consistent with previous reports showing that seed match
correlates with fold change (Nielsen et al. 2007) and con-
sistent with a function of miRNA as continuous modu-
lators tuning expression rather than purely binary on-off
switching (Bartel and Chen 2004; Bartel 2009).

As a point of reference, we compared the prediction of
the model built from miRNA transfection data to exist-
ing target prediction programs, using protein-OE as the
validation data set. The results (Fig. 5C) showed that the
full predictive model with the combination of all features
performed well at all false-positive levels, demonstrating
that the features extracted and models used in this analysis
were comparable to existing approaches and published
analyses.

CONCLUSION

With the increasing use of new CLIP-seq protocols, it is of
importance to understand the determinants of microRNA
targeting revealed in comparison with existing techniques,
both to gain a deeper understanding of the features in a wider
context and to be aware of possible selection biases in the
protocol. We presented a nonparametric predictive model-
based analysis to investigate miRNA–target interaction de-
terminants by comparing miRNA transfection microarray
data and recent CLIP-seq data. This study gives an in-depth
evaluation of miRNA–target feature importance and interac-
tion based on both statistical significance and also, impor-
tantly, on predictive performance.

The analysis revealed clear differences in target conserva-
tion and seed match features between miRNA expression-
based and AGO CLIP-seq data sets. These two types of data
sets are complementary: The AGO CLIP-seq data indicates
whether miRNP binds to the 39 UTRs, whereas the expression
analysis reveals features leading to a substantial expression
effect size of this binding. Conservation features were shown
to be highly ranked and strongly predictive for the CLIP-seq
data, while seed match features, including seed type, align-
ment score, number of sites, GU pairing, and mismatches are
most predictive in the miRNA expression-based data, due in
part to higher input miRNA concentrations.

We hypothesize that the CLIP-seq protocol will prefer-
entially select for the most strongly bound miRNP–target
interactions due to the interaction of protein components
of the miRNP complex with flanking regions, and this could
be enhanced by additional RNA-binding protein compo-
nents. This could explain the substantial conservation in the
flanking regions.

The CLIP-seq analyses also showed a large increase in 39

UTR length for the positive set. Although this ranked as one
of the most important features, a selection bias toward long
39 UTRs may account for some of this effect, so caution is
needed in its interpretation. The CLIP-seq data showed
substantial differences to previous RIP protocol analyses,
most strikingly in an inverse effect for 39 UTR length,
probably reflecting different selection biases of the protocols.
We note that the HITS-CLIP and PAR-CLIP data showed
consistent results across most of the features analyzed except
for U/C base compositional differences, adding support to
these findings. The predictive models trained on the CLIP-
seq and expression data sets showed considerable differ-
ences in predictive performance when applied to other
independent proteome and miRNA knock-down expres-
sion data sets, further demonstrating the differences in the
target determinants.

The combination of all flanking features was shown to be
highly predictive, giving a prediction performance compa-
rable to the seed match features. There are several lines of
evidence supporting that flanking regions surrounding
target sites are functionally related to miRNA targeting:
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nucleotide composition, especially U-frequency enrich-
ment in target flanking regions; conserved regions extend-
ing beyond the seed site to at least 70 bp; the structural
strand asymmetry in flanking regions, due to potential G-U
pairings extending to 70 bp or more.

Utilizing CLIP cross-linking protocols with a predictive
analysis has provided additional evidence on the features and
their interactions determining miRNP binding and subse-
quent message degradation: in some cases providing addi-
tional support for previously published observations, and in
other cases new insights into the relative importance of target
and flanking features and the performance of the CLIP-seq
protocols. Predictive models and results are available at http://
servers.binf.ku.dk/antar/.

MATERIALS AND METHODS

Data resources

miRNA transfection data sets

MiRNA transfection microarray expression data sets in Lim et al.
(2005) and Grimson et al. (2007) were retrieved from the GEO
database (accession nos. GDS1858 and GSE8501). The data sets
contain mRNA expression profiles generated by overexpressing 12
miRNA duplexes in HeLa cells relative to negative controls using
Agilent microarrays. Note that the miRNAs used were all from
different microRNA families, and so, are expected to have low-
sequence similarity. We also obtained a miRNA knock-down
microarray expression data set generated by transfecting LNA hsa-
miR-21 in MCF-7 cells (Frankel et al. 2007). We applied a non-
specific filtering step to exclude those genes showing low overall
expression levels in the control samples, as these genes were
unlikely to clearly show down- or up-regulation after miRNA
transfection or inhibition. To do this, for each miRNA trans-
fection microarray set, only those probes with an expression level
over at least half of the control samples greater than the median
expression level of the control samples were retained for further
analysis. For the miR-21 knock-down microarray data set, we
required the interquartile range of probe expression levels to be
greater than the median value of the interquartile range of
expression levels for all probes. Expression values were averaged
for those genes with corresponding multiple probes. We obtained
the pSILAC proteomics data set, which measured protein changes
following transfection of five miRNAs. We also downloaded pro-
teome data with mir-223 gene knock-out in mouse neutrophils
compared with wild-type mouse from Baek et al. (2008). We used
fold changes obtained from these proteome data sets directly
without further data processing.

CLIP-seq data sets

Two recent publications by Chi et al. (2009) and Hafner et al.
(2010) reported cross-linking Argonaute protein–RNA complex
experiments, followed by immunoprecipitation in mouse brain
(AGO HITS-CLIP) and in human embryonic kidney (HEK) 293
cell lines (PAR-CLIP). We downloaded the AGO HITS-CLIP Ago
ternary map table (mm9) for the 20 most-abundant miRNAs from

http://ago.rockefeller.edu/index.php. The PAR-CLIP data for AGO-
bound clusters (AGO 1–4) was obtained from the Supplemental
tables of the published study. We subsequently annotated the gene
symbols of the PAR-CLIP clusters based on their genomic co-
ordinates. We restricted the feature analysis to 39 UTR regions
for both expression and CLIP-seq data sets. Annotated 39 UTR
sequences were obtained from the UCSC table browser. We used the
miRNA annotations of clusters from Chi et al. (2009) and Hafner
et al. (2010). We obtained the top 100 expressed miRNA rankings in
HEK293 cells from PAR-CLIP original manuscript’s Supplemental
Table S7 and clustered the miRNAs into 50 miRNA families, where
mature sequences sharing the same 6-mer seed sites (miRNA
position 2 to 7) or sharing the same family name in miRBase were
grouped into the same family. From those, a representative member
for each of the top 20 most-abundant miRNA families was used for
this study.

PAR-CLIP AGO1–AGO4 sequencing data

To calculate PAR-CLIP background nucleotide frequencies, we
used PAR-CLIP AGO1–AGO4 sequencing data (GEO: GSM545212,
GSM545213, GSM545214, GSM545215) after mapping to the
genome. We extracted sequence reads (added 10-bp flanks on both
sides) that mapped to 39 UTRs from all AGO data and calculated
sequence nucleotide frequencies.

PAR-CLIP mRNA expression data

We calculated PAR-CLIP transcripts expression change using the
top 25 miRNA inhibition against mock-transfected microarrays
in HEK293 cells (GEO: GSM538818, GSM538819, GSM538820,
GSM538821). Arrays were normalized (using the vsnrma package
in Bioconductor). We also used mock-transfected arrays to estimate
mRNA expression levels by averaging over two mock transfection
replicates.

RIP-chip data

We obtained RIP-chip data in HEK293 cells (Hendrickson et al.
2008) from the original manuscript’s Supplementary Tables. Sim-
ilarly to the CLIP-seq data, we used the top 20 most-abundant
miRNA families in the model training.

Construction of positive and negative sets

In the miRNA transfection data sets, we included only down-
regulated genes for miRNA transfection and up-regulated genes for
miRNA inhibition experiments. Although the true status of which
genes are miRNA targets is not directly available, genes that show a
change in expression after overexpressing or inhibiting a miRNA are
enriched for target genes. For each miRNA transfection experiment,
the positive set was defined as genes with an expression fold change
beyond a defined threshold, and the negative set was defined as
genes with no substantial fold change and, subsequently, constructed
by randomly selecting a set of genes of equal size to the positive set.
The positive set and the negative set were pooled together from all
miRNA transfection experiments. We compared different thresholds
of expression fold change that were used to determine the positive
target set. The thresholds of fold change were set at a range from 1.2-
fold to 1.8-fold down-regulation (in steps of 0.1) for the pooled
miRNA transfection data sets, 1.2-fold to 1.7-fold down-regulation
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(in steps of 0.1) for the pooled pSILAC proteomics data set, and 1.1-
fold to 1.3-fold up-regulation (in steps of 0.05) for the miR-21
knock-down mRNA data set. For both the HITS-CLIP and PAR-
CLIP data, the positive set was defined as a set of genes with one or
more CLIP-seq clusters present, and the negative set was constructed
by randomly selecting a set of genes of equal size as the target set, but
in which no CLIP-seq clusters (including clusters in UTRs and
coding regions) could be found. Transcripts with cluster labeling
were obtained from the data resource described above. The positive
set and the negative set were balanced in size for each miRNA and
pooled together from all miRNAs for each CLIP data. We applied
different thresholds for defining the positive set: for the HITS-CLIP
data the number of clusters was in a range of from two to 10 and a
BC value (a reproducibility measure in five biological replicates) was
of a range of from two to five; for the PAR-CLIP data, the number of
T-to-C mutations (a measure of cross-linking efficiency) was set at
a range of from greater than one to five. Three data sets were
constructed for all feature analyses in this study unless otherwise
specified: (1) a subset of mRNA expression data set following 12
miRNA transfection with the positive set defined by fold change
$1.6-fold, (2) a subset of HITS-CLIP data set with the positive set
defined by the number of tags $9 and BC $4, and (3) a subset of
PAR-CLIP data set with the positive set defined by T-to-C
mutations $5 for the top 20 most-abundant miRNA families. For
RIP-chip data, the positive set was defined as genes with an IP
enrichment of greater than fourfold, which was selected to give a
data set size approximately equal to PAR-CLIP data. The negative set
was defined as genes that were not bound by AGO and then
constructed by randomly selecting a set of genes of equal size as the
positive set.

Extraction of miRNA–target interaction features

All 39 UTRs were extracted from the UCSC table browser and the
unique longest 39 UTR for each gene was used. We gene symbols
as the gene identifiers in all experiments in this study to avoid
gene identifier conversion bias (Ritchie et al. 2009).

CLIP-seq methods provide spatial information with the esti-
mated target locations. For the miRNA transfection data sets, which
do not have such spatial information available, putative target sites
were predicted using miRanda (John et al. 2004) with loose cut-offs
(score $70, energy #�4, and default settings for other parame-
ters). 39 UTRs that did not pass this initial scan were excluded. For
each 39 UTR, the best target site was used for the analysis (except
that the total number of target sites was also used as a feature), i.e.,
the target site with the highest miRNA-target alignment score. Note
that this approach allows the best putative match without in-
troducing a selection bias on seed match features, as it uses precisely
the same method on both the positive and negative sets (see
Supplemental Materials and Methods for miRNA–target features
used in this study).

For CLIP-seq positive data sets, the spatial information of CLIP-
seq cluster sites was utilized to compute all features where
applicable (except for seed-related features, see below) to give the
best estimates of AUC. For the CLIP-seq negative sets, where spatial
information is not available, we used the best scoring target site as
described above. However, selection biases could potentially be
induced by different selection methods being applied between
positive and negative sets for seed-related features. The results
show that seed-related features are much less predictive when using

CLIP-seq cluster sites to define the positive set (e.g., PAR-CLIP
clusters AUC = 0.71 vs. best scoring approach AUC = 0.78; P =
5.4E-9), as the null negative sets have an upward selection bias
induced from the best scoring selection method; the measured
AUCs for these seed-features (target complementarity features,
number of target sites, and target free-energy-based features) are
biased lower (measured AUCs are shown in Supplemental Fig. 8).
Therefore, the seed-related features were calculated using the best
scoring seed match in both positive and negative sets to ensure that
the features do not suffer from selection bias. For global features
such as UTR length, these issues do not apply. To validate that the
conclusions for comparisons between miRNA transfection and
CLIP-seq data are not affected by these potential biases, a completely
unbiased feature comparison where the best putative match sites
were used in all data sets is presented in the Supplemental Material
(Supplemental Figs. 7–9; Supplemental Table 3).

miRNA–target feature importance and prediction
using Random Forest

To accurately quantify miRNA–target interaction features, we
measured the discriminative power of both individual and com-
bined features with receiver operating characteristic (ROC) curves.
ROC curves have the advantage of showing the performance over
a full range of classification thresholds. The area under the ROC
curve (AUC) is a summary measure of the discriminative power of
the given features for a given classifier, which varies from 0.5 for
nondistinguishable classes to 1.0 for perfectly separable classes (as
a guideline, a value of 0.9–1.0 indicates excellent discrimination,
0.8–0.9 indicates very good discrimination, and 0.5–0.6 indicates no
useful discrimination). The Hanley-McNeil test (Hanley and
McNeil 1982), which uses an estimate of the standard error of
AUC for a given sample size, was used to measure statistical
significance of AUC increases. A Random Forest classifier (Breiman
2001) was used to combine features. Univariate feature AUCs were
directly computed from the rank orderings of each feature by

formula: AUC =
+

n1
i=1

R1i�n1 n1+1ð Þ=2

n1n2
, where n1 and n2 are sample size

in positive and negative sets, respectively, and R1i is the ranking of a
feature in the positive set (Hanley and McNeil 1982). We calculated
the univariate feature AUCs using colAUC from the caTools
package in R.

We built a predictive model using a Random Forest classifier
with multivariable combinations of the features. A leave-one-
miRNA family-out cross-validation was used to evaluate the
classifier performance. To do this, the data set was split into
subsets, with a subset representing each miRNA family. By leaving
one subset out in each round, a Random Forest classifier was
trained on the remaining data and evaluated on this withheld
subset. To evaluate the discriminability of the classes, the ROC
curves and the associated AUC were calculated. To check for any
biases in the machine learning evaluation, a permutation test was
performed wherein the class label of high or low fold changes were
randomly shuffled. It showed the expected random predictive
accuracy of z50%. We used the mean decrease in Gini index
in a Random Forest classifier to estimate feature importance. The
parameter settings of the Random Forest classifier were set to their
defaults. For comparison, the data was also classified using a simple
linear classifier—linear discriminant analysis (LDA). It performed
comparably with an overall performance of model evaluation using
LDA decreased by an AUC of 1%–2% (data not shown).
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Additional details and methods are presented in the Supple-
mental Material.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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