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No evidence that mRNAs have lower folding free
energies than random sequences with the same
dinucleotide distribution
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ABSTRACT

This work investigates whether mRNA has a lower
estimated folding free energy than random
sequences. The free energy estimates are calculated
by the mfold program for prediction of RNA
secondary structures. For a set of 46 mRNAs it is
shown that the predicted free energy is not signifi-
cantly different from random sequences with the
same dinucleotide distribution. For random
sequences with the same mononucleotide distribu-
tion it has previously been shown that the native
mRNA sequences have a lower predicted free
energy, which indicates a more stable structure than
random sequences. However, dinucleotide content is
important when assessing the significance of
predicted free energy as the physical stability of RNA
secondary structure is known to depend on dinucle-
otide base stacking energies. Even known RNA
secondary structures, like tRNAs, can be shown to
have predicted free energies indistinguishable from
randomized sequences. This suggests that the
predicted free energy is not always a good determi-
nant for RNA folding.

INTRODUCTION

The secondary structure of single-stranded RNA is known to
implicate tertiary structure and function. Localized structures
in mRNA have been shown to play important functional roles
in translational regulation of some genes (1,2). However, it is
unclear whether more global structures are formed by mRNA
(3). In a recent paper (4) the folding free energy of mRNA
from various organisms was predicted by the mfold program
(5,6) and compared to that of random sequences with the same
nucleotide distribution. The paper concludes that the native
sequences on average have a significantly lower predicted free
energy than the random sequences, and thus suggests that
mRNA is likely to form secondary structure and that this biases
the selection of codons.

The methods typically used for predicting RNA structure
attempt to minimize the free energy of the molecule by maxi-
mizing the number of favorable base pairing interactions (7,8).
The main contribution to the stability of RNA secondary struc-

ture is the free energy associated with base pairing. This f
energy can be well approximated by stacking energies t
depend not only on a single base pair, but on two neighbor
base pairs (9,10). For instance, a C–G base pair is more fa
rable than a G–C base pair when stacked on top of an A–U b
pair. It is well known that the dinucleotide distribution of DNA
sequences is quite different from what would be expected fro
the nucleotide distribution alone (see for example 11). For t
reason the dinucleotide frequency bias in the transcribed R
should be important for the predicted free energy.

In Seffens and Digby (4) the predicted free energy of foldin
a native sequence was compared to several types of rand
sequences, such as random shuffling of the native seque
and randomly shuffled coding regions, but none of the
preserved the dinucleotide distribution. The codon-shuffl
sequences also tested in the paper are the most conservati
terms of dinucleotide statistics, and they turned out to hav
lower average predicted free energy than the randomly sh
fled sequences. In this paper we perform a similar analysis,
using random sequences with the same dinucleotide distri
tion as the native sequence. We find no evidence that
average) mRNAs have lower predicted free energies than
random sequences.

The method is also tested on two well-known RNA structure
tRNA and the 18S rRNA from the ribosome small subunit. Th
analysis suggests that the method is not always sensitive eno
to discriminate between random sequences and RNA with
known secondary structure. This may also indicate that the f
prediction method is not sensitive enough to detect small localiz
structures in long mRNA sequences (300–1200 nt).

MATERIALS AND METHODS

Data

An attempt was made to extract all the 51 mRNA sequenc
used in Seffens and Digby (4) from GenBank release 109
However, some were not found (HUMHPBS, HUMIFNAF
and PHVLBA) and some had significantly different length
(ECOALKA and ECODAPA) than that reported in Seffen
and Digby (4) and were excluded. This set is listed in Tables
and 2. A set of five tRNA sequences was selected from t
tRNA Sequence Database (12) and five ribosomal RN
sequences from Van de Peeret al. (13). These sets are listed in
Table 3.
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Comparison between wild-type and random sequences

The newest version of the mfold program was obtained from
Michael Zuker (mfold v.3.0). The mfold program minimizes a
free energy function, which sums contributions from stacking,
loop lengths, etc. It actually estimates the difference between
the free energy of the unfolded state and the folded state. For
any given RNA sequence length, the lower the energy estimate
the more stable the predicted fold. The minimization is done by
a dynamic programming method that always finds the
secondary structure with the minimum free energy under a
simplified secondary structure model (7,14). Although the
various contributions to the free energy are obtained from
experiments (9,10), a simplified model of RNA structure that
disregards pseudoknots and other tertiary structures usually
does not give a 100% correctly predicted secondary structure
and occasionally the prediction is completely wrong.

For each native mRNA the minimum free energy prediction
was found using mfold for energy calculations at 37°C. Then
10 random sequences of the same length as the native were
generated and the minimum free energy prediction was found
for each. The average and standard deviation were calculated
and from these values the ‘segment score’ was found for each
of the native sequences (4). The segment score is the number of
standard deviations by which the predicted free energy of the
native sequence is lower than the average of the random
sequences. This is also called theZ-score, which will be the
term used from here on. If theZ-score is positive then the
native sequence has a higher minimum predicted free energy
than the average of the random sequences and therefore is
thought to have less secondary structure than random sequence.Z-

scores were calculated for all the native sequences with the
different types of random sequences described below.

Random sequences

Making random sequences with exactly the same number
each nucleotide as the native sequence is trivial, one sim
makes a random permutation of the nucleotides. It is less triv
to make a random sequence with exactly the same numbe
each dinucleotide as the native. We have made two differ
types of random sequences based on the dinucleotide distr
tion of the native sequence. Similarly, we made two types
random sequences based on the mononucleotide distributio
be used for comparison. The four types are detailed below.

Zero order Markov.The mononucleotide frequencies, P(b), for
the native RNA sequence were calculated and used to gene
a random sequence in which bases were simply chosen
random from P(b) until the length of the native sequence wa
reached (zero order Markov process).

Mononucleotide shuffled.The mononucleotide counts for the
native RNA sequence were calculated and the rand-s
program, written by Gerald Hertz (unpublished), was used
generate a shuffled version. Rand-seq is given the seque
length and nucleotide counts and draws at random, weigh
by the nucleotide proportions, until all counts are depleted.

First order Markov.From the native sequence the condition
probability P(a|b) of nucleotidea given b is found from the
frequencies of the 16 possible pairsa,b. A random sequence is
generated by first choosing a random nucleotidex1, and then
generate a sequence by choosing each nucleotidexi + 1 from

Figure 1. Histograms of theZ-scores for the four types of random sequences. The top row are for the zero order randomizations, the zero order Markov (
shuffled sequences (right), while the bottom row are for the first order randomizations, first order Markov (left) and dinucleotide shuffled (right).
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the probability P(xi + 1|xi) (first order Markov process). The
process is stopped when the sequence has exactly the same
length as the native.

Dinucleotide shuffled.Dinucleotide shuffling is performed in
the following way. At each iteration a random trinucleotide is
chosen (e.g. ATT). Then all the non-overlapping trinucleotides
that begin and end with the same bases (e.g. AAT, ACT, AGT

and ATT) are shuffled at random. This is doneN times, where
N was chosen to be 10 times the length of the native sequen

The random sequences generated by one of the Mar
processes will be ‘truly’ random, meaning that the only rel
tion to the native sequence is the mononucleotide (zero ord
or dinucleotide (first order) distribution. However, the exa
number of each nucleotide or dinucleotide will fluctuat
around the numbers in the native sequence.

Table 1. Comparison of the Z-scores and P valuesfrom each of the four random sequence models

The shuffled mono-nuc. and zero order Markov columns correspond to the zero order random models. The shuffled
di-nuc. and first order Markov columns show the first order randomization statistics.
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The shuffling methods preserve the exact nucleotide or
dinucleotide composition. The mononucleotide shuffling
produces a truly random sequence (by the definition above). A
dinucleotide shuffled sequence will have exactly the same
number of each dinucleotide, but may be ‘less random’ due to
fewer possible dinucleotide-preserving permutations. In fact,
one can think of extreme examples where the sequence is not
changed at all (e.g. of the form AAAATTTT), but in the real
examples we have looked at, the shuffled sequence has no
resemblance to the native, and we believe them to be

randomized very effectively. These sequences always start
end with the same nucleotides as the native sequence, bu
sequences that are all longer than 300 bases, we consider
to be of no importance. A careful and detailed treatment
dinucleotide shuffling is given in Altschul and Erickson (15
though any dinucleotide-preserving randomization method w
be limited by sequences with few dinucleotide permutations,
discussed above. The two first types of randomization (zero or
Markov and mononucleotide shuffled) will be referred to as ze
order randomizations and the last two as first order randomizatio

Table 2. Comparison of the native folding energies with the averagesfrom each of the four
random sequence models

The shuffled mono-nuc. and zero order Markov columns correspond to the zero order random
model folding energy averages. The shuffled di-nuc. and first order Markov columns corre-
spond to the folding energy averages of the first order randomizations.
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Statistical significance

For a single mRNA one would like to know whether theZ-
score is significantly different from that of a random sequence.
The distribution ofZ-scores for random sequences turns out to
be fairly well approximated by a normal distribution with
mean 0 and standard deviation 1, although this has no theoret-
ical justification (one would rather expect an extreme value
distribution because of the minimization over all possible
folds). Under this approximation aZ-score of less than –2.33 is
significant at 1%.

To account for the deviations from normal we have directly
estimated significance levels by order statistics. To determine
significance of theZ-score, we must make comparison with the
distribution of Z-scores for random sequences with the same
lengths and nucleotide statistics as the native sequences. For
each of the 46 native sequences a set of 101 random sequences
are generated (by one of the four methods) and their free ener-
gies estimated from the predicted fold. The following bootstrap
type procedure (16) was repeated 2000 times. For each of the
46 groups, a random sequence is selected (the test sequence)
and a random subset of 10 sequences is selected from the
remaining 100 sequences [there are or≈1013 ways to
calculate a mean and a variance in this manner]. TheZ-score is
calculated for the random test sequence from the mean and
variance of the other 10 random sequences. The averageZ-
score over the 46 test sequences is also found. For a given
native sequence, the fraction of random sequences with aZ-
score lower than that of the native gives a very good approxi-
mation to the probability that a score lower than this value
occurred at random. We call this theP value for the sequence.

In the limit of large sample size theZ-scores for the random
sequences would have mean 0 and a standard deviation of 1.
Therefore the averageZ-score over 46 sequences would be
normally distributed with average 0 and a standard deviation of
1/ to a very good approximation. For a sample of just 10
sequences the standard deviation would be slightly larger than
1, but if we disregard that effect, an averageZ-score of less
than –2.33/ = –0.344 would be significant at the 1% level.
Although this is a good guideline, we have again used the order
statistics described above. The fraction of the 2000 average
randomZ-score values that are lower than the averageZ-score
for the native sequences is theP value for the average.

RESULTS AND DISCUSSION

TheZ-scores andP values for the mRNAs are shown in Table
1 for all four types of random sequences. The predicted free
energies used for these calculations are shown in Table 2. The
energies reported in Seffens and Digby (4) are all significantly
larger than the ones we obtain, which could be due to different
parameter settings or differences between the mfold versions.
The Z-scores for the two zero order randomizations agree
reasonably well with the findings of Seffens and Digby (4),
who obtained an averageZ-score of –1.23 for randomly shuf-
fled sequences, for which we obtain –1.59 (and –0.83 for the
Markov random). This difference may be because of the
mRNAs missing in our set, the different version of the mfold
program or because of fluctuations due to differences in the
random sequences. The important point is that the trend is the
same: on average the energies are lower for the native

sequences than for the zero order random sequences.
distributions ofZ-scores can be seen in Figure 1. The avera
Z-scores are clearly significant for the zero order shufflin
with P values much less than 0.01 (which corresponds to aZ-
score of approximately –0.35 as discussed in Materials a
Methods).

The large difference between the zero order Mark
sequences and the shuffled sequences is due to larger fluc
tions in the energies for the Markov sequences than the oth
This is primarily due to fluctuations in GC content that occur
Markov random sequences whereas sequence shufflings m
tain constant GC:AT ratios. When the variance is larger theZ-
scores attenuate. The average folding energies for the
types of random sequences are essentially the same. Tab
also shows theZ-scores for the first order randomizations
Here the average is much smaller: –0.22 for the dinucleot
shuffled sequences and –0.20 for the first order Mark
random sequences. Although there is still a negative trend
the score, it is quite clear from the score histograms in Figur
that it is insignificant. The histograms look almost symmetric
around 0, whereas a clear skew to the negative side is obse
for the zero order randomizations. The order statistics
random sequences described in Materials and Methods giv
probability of 0.11 for a meanZ-score value of less than –0.22
for the dinucleotide shuffled sequences and a probability
0.13 for a meanZ-score value of less than –0.20 for the firs
order Markov random sequences.

If we consider the sequences individually, we see that ma
individual Z-scores calculated with zero order randomizatio
appear significant while the large majority calculated with fir
order randomizations do not. If we use 0.01 as a significan
threshold, we find 10 significant sequences from either t
mononucleotide shuffled or zero order MarkovP values. Only
three sequences appear significant for either shuffled dinucl
tide or first order Markov random and this supports the po
significance values we find for the averageZ-scores. We also
find three sequences with significantly higher predicted fr

100
10 

 

46

46

Figure 2. Correlation betweenZ-score andP value for all mRNAs and all four
types of randomization. The different types of randomization are indist
guishable. The curve for a normal distribution of mean 0 and a standard de
tion of 1 is also displayed.
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energies than expected from random (P values >0.99) in either
of the first order randomization methods and only one
sequenceP value above this for the zero order models. The
ratios of significantly low to significantly high sequenceP
values are 10:1 for the zero order methods and 1:1 for the first
order methods. In Figure 2 theP values are plotted against the
Z-scores for all types of randomizations. Notice that the distri-
bution is close to normal, but the standard deviation is larger
than 1, as expected (see Materials and Methods).

The process was repeated for five tRNAs and five 18S
rRNAs for the monomer shuffled and dimer shuffled random
models. The results are shown in Table 3. Surprisingly, the
tRNAs do not show a very clear difference between the native
sequence and dinucleotide shuffled, and one of the native
sequences even has a higher energy than the average of the
shuffled ones. EstimatingP values from Figure 2 suggests that
two of the zero orderZ-scores are potentially significant while
none of the dinucleotide shuffledZ-scores appear to be signif-
icant. For the rRNA there is quite a significant difference for
all rRNA sequences. On average the predicted free energy of
the native sequence is >8 SD from the random sequences, and
they all have predicted free energies lower than the average of
the random sequences. For these molecules there is only little

difference in the results between the zero and first order ra
omizations.

The tRNAs are very short sequences (~70 bases) while
rRNAs are long (1500–2000 bases). Both are known to ha
global secondary structures. We suggest that extended struct

Figure 3. The fold predicted by mfold for anArabidopsistRNA (A) compared to secondary structure predictions for randomized versions of the same mol
Structures (B) and (C) are examples from mononucleotide shuffled randomization while (D) and (E) show dinucleotide shuffled randomizations. Drawings we
created with plt22ps by D. Stewart and M. Zuker.

Table 3.Comparison of the native folding energies with the averages from t
shuffled mononucleotide and dinucleotide sequence models for selected tR
and rRNA sequences
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of long RNA sequences need to be significantly more ener-
getically favorable than those of short sequences for kinetic
reasons. If there exist many suboptimal foldings with free ener-
gies close to the native, then they will compete with the native
fold and the folding process will be extremely slow (17,18).
Another explanation for the difference between tRNA and
rRNA behavior is that tertiary structure, which is not taken into
account in the predicted free energy calculation, contributes
more significantly to the predicted free energy of tRNAs.
Furthermore, since it is known that rRNAs have extended
global secondary structures and both zero and first order rand-
omization methods are capable of disrupting this global struc-
ture, one would expect the same trend in mRNA sequences
should they have global secondary structures.

It is interesting that apparently ‘well-folded’ structures can
be obtained from short random sequences. In Figure 3 a few
structures predicted from shuffled tRNA sequences are shown.

CONCLUSIONS

The comparison of the predicted free energy of mRNA and
random sequences with the same dinucleotide distribution
shows no significant difference between the two for the 46
mRNAs studied here. This suggests that mRNA, in general,
does not form more stable extended structures than random
sequences. Considering the inability to distinguish short
tRNAs (with well-known secondary structures) from rand-
omized tRNAs, the method is probably not sensitive enough to
determine whether mRNAs form localized structures. For
example, stable hairpin loops are known to be important in
translational control of some genes but are not likely to be
detected in the predicted folding energy of an otherwise unfa-
vorable global secondary structure. It was shown that the
dinucleotide distribution is important for determining the
significance of secondary structure, which is not surprising
since stacking energies are crucial for the stability of RNA
structure. It is unlikely that the dinucleotide distribution of
mRNA is influenced by a need to form secondary structure,
because the dinucleotide distribution is generally very similar

in other types of DNA from the same organism (i.e. non
coding DNA) and varies greatly between coding regions
different organisms.
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