
Using adaptive operator scheduling on problem domains with an operator
manifold: Applications to the Travelling Salesman Problem

Wouter Boomsma
EVALife group, Dept. of Computer Science, University of Aarhus

Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark
wb@daimi.au.dk

Abstract- A growing problem in the field of evolution-
ary computation is the large amount of genetic operators
available for certain problem domains. This tendency
is especially pronounced in areas where heuristics are
used to create highly specialised operators. Even within
the same problem domain, the performance of such op-
erators often depends on the specific problem instance
at hand. This results in a tedious and time-consuming
process of comparing individual operator performances
every time a new problem is to be solved.

This paper investigates the use of adaptive opera-
tor scheduling to automate the operator selection pro-
cess. The approach is tested on instances of the Trav-
elling Salesman Problem - a problem for which a long
list of operators exists. Results show that benefits are
twofold: Operator selection is achieved automatically
and an overall performance improvement is observed.

1 Introduction

It has become generally accepted that genetic algorithms
benefit from the incorporation of domain specific knowl-
edge. Many real-world problems are solved by designing
a problem specific representation and corresponding oper-
ators that manipulate individuals with methods inspired by
the context of the problem. The possibilities for creating
more or less sophisticated heuristic operators are endless.
Papers presenting new operators for specific problem do-
mains appear frequently.

When confronted with a new problem to solve, the evo-
lutionary programmer is thus forced to take a pick in a
large pool of operators. Even though the literature will con-
tain comparisons between certain selections of operators,
the uncertainty remains: Which combination of operators
performs best for the specific problem at hand? A good
overview requires the programmer to invest time and effort
in comparing all operators individually.

In this paper I investigate whether adaptive operator
scheduling is a possible solution to this problem. The idea
is that the whole set of candidate operators is implemented,
and that the optimal choice of operators is found automati-
cally by the algorithm.

Previous work is not conclusive on the effects that
adaptive operator scheduling has on performance. Davis
presents good results on neural networks in his original pa-

per from 1989[1]. Srinivas & Patnaik tested an approach
on both numerical benchmark problems and smaller in-
stances of the TSP with good results on most problems[4].
Julstrom does well on the same problems with a different
approach[5]. Thomsen & Krink achieve encouraging re-
sults on a set of numerical benchmark functions[2]. How-
ever, Eiben, Sprinkhuizen-Kuyper & Thijssen report that
performance was not improved in their competing crossover
approach[3], and Tuson & Ross only achieved better perfor-
mance on certain problems[6]. In the light of these results,
significant performance improvements over non-adaptive
algorithms are not anticipated. The adaptive approach might
introduce some improvements as an added bonus, but solv-
ing the tedious operator selection problem is the main ob-
jective.

The algorithm is tested on the travelling salesman prob-
lem - a well known NP-hard combinatorial problem for
which many operators have been designed. TSP consists
of determining the shortest Hamiltonian cycle in a complete
graph, i.e. visiting all nodes and minimising the summed
weight of the edges passed on the way.

The paper is organised as follows: Section 2 presents
a selection of operators that have been developed for the
TSP during the last 30 years. In section 3 the adaptive op-
erator scheduling genetic algorithm (AOSGA) is described
followed by a description of the conducted experiments in
section 4. Section 5 focuses on a performance compari-
son between the AOSGA and the genetic algorithms with
a fixed combination of operators (fixed-op GAs). I show
that that the adaptive approach gives robust results equal or
slightly better than any combinations of fixed operators. A
discussion of the results and some concluding remarks are
presented in section 6.

2 The Operators

Table 1 lists the 6 mutation operators and 10 crossover op-
erators used in the experiments. They all operate on a path
representation of the TSP.

The selection of operators was inspired by Larrañaga’s
survey paper from 1999[21]. In recent years other opera-
tors have been proposed (e.g. [22, 23, 24]), and some of
these are known to outperform the ones listed in table 1.
Time has not yet permitted me to implement these more ad-
vanced operators. This is however not a serious limitation.



Name Authors
Partially mapped Crossover (PMX) Goldberg and Lingle [7]
Cycle Crossover (CX) Oliver, Smith and Holland [8]
Order Crossover (OX1) Davis [9]
Order Based Crossover (OX2) Syswerda [10]
Position Based Crossover (POS) Syswerda [10]
Heuristic Crossover (HEU) Grefenstette [11]
Edge Recombination Crossover (ER) Whitley, Timothy and Fuquay [12]
Maximal Preservative Crossover (MPX)Mühlenbein, Gorges-Schleuter and Krämer [13]
Voting Recombination Crossover (VR) Mühlenbein [14]
Alternating Position Crossover (AP) Larrãnaga, Kuijpers, Poza, and Murga [15]
Displacement Mutation (DM) Michalewicz [16]
Exchange Mutation (EM) Banzhaf [17]
Insertion Mutation (ISM) Fogel [18]
Simple Inversion Mutation (SIM) Holland [19]
Inversion Mutation (IVM) Fogel [20]
Scramble Mutation (SM) Syswerda [10]

Table 1: The operators

Since the goal of this paper is to analyse costs and benefits
of an adaptive approach compared to an approach with fixed
operators, we are interested in relative performance between
the approaches rather than the absolute performance of sin-
gle operators.

3 The AOSGA model

The AOSGA (figure 1) is based on an algorithm presented
by Lawrence Davis in 1989[1]. His paper represents one of
the first efforts to incorporate adaptive operator scheduling
in a genetic algorithm. The idea is as follows: All indi-
viduals in the population keep track of the operator used
to create them and which other individuals (parents) were
involved. New individuals are rewarded if their fitness ex-
ceeds the current best fitness in the population. Further-
more, the individual’s ancestors are recursively rewarded
(to depthM) with some percentageP of their child’s reward.
Once everyI ’th generation, every operator is rewarded by
the sum of the rewards of the individuals that it has pro-
duced. Based on these operator rewards, the new probabil-
ity settings are computed. The parameterWdetermines the
window of adaptation (how many of the recently created in-
dividuals should be considered) and the parameterS deter-
mines how much the probability is shifted. The probability
update equation for theith operator in the operator pool is:

p′[i] = (1− S) ∗ p[i] + S∗ reward[i]
totalReward

(1)

A few modifications were made to Davis’ original de-
scription. First, the steady state approach was generalised

to a generational GA with a variable elite size (Setting the
elite size to one below the population size gives us Davis’
steady state approach). A generation consists of recombina-
tion, mutation and selection, and for each of these a group
of operators is defined. It is within these groups that Davis’
probability adaptation scheme is applied (the probabilities
in each group thus sum to 1.0).

AOSGA
initialize(population)
while (!done){

recombine(population)
mutate(population)
select(population)
if (generations modI == 0)

adapt()
}

adapt()
PassOnRewardsToParents()
for each of theW individuals created most recentlydo

assignOperatorRewards()
updateOperatorProbabilities()

Figure 1: Pseudo-code for the AOSGA

A lower bound (2%) on the operator probabilities was
introduced to avoid that operators go extinct during the run.
This is done to ensure that all operators have a chance of
revival after a period of dominance of a rival operator. To
further encourage this recovery, the operator probability set-
ting slowly expires: If the AOSGA completes a generation



TSP Optimum Evaluations Best fixed-op GA AOSGA
used Operators Best Average Best Average

gr48 5,046 50,000 IVM+HEU 5,046 5,184.8(2.6) 5,046 5,166.0(2.4)
brg180 1,950 2 mil. IVM+OX1 1,980 2,036.2(3.2) 1,970 2,067.0(4.6)
pcb442 50,778 3 mil. SIM+OX2 54,847 57,278(91) 53,532 55,442.0(81)

Table 2: Best fixed-op GA vs. the AOSGA

without improving the best solution, it adjusts the operator
probabilities slightly towards the original values. The prob-
ability update function is in this case:

p′[i] = (1− 0.005) ∗ p[i] + 0.005 ∗ 1
NrOfOps

(2)

where NrOfOps is the number of operators in the pool.

4 Experiments

This study was motivated by a wish to avoid the tedious
operator selection process when faced with a new problem.
Two criteria must be fulfilled for this approach to be suc-
cessful:

1. Quality: The results of the AOSGA should be as good
as the best of the fixed-op versions.

2. Speed: Convergence speed should not be signifi-
cantly reduced.

The quality issue is investigated by comparing the results
of the AOSGA with all fixed-op combinations of a single
mutation and crossover operator. Speed is tested by plot-
ting the current best solution as a function of used evalu-
ations during the course of the solution process (averaged
over some amount of runs).

Experiments were conducted on 3 symmetrical TSP in-
stances: A 48-city problem, a 180-city problem and a
442-city problem (gr48, brg180 and pcb442), all of which
are taken from the TSP benchmark problem collection
TSPLIB[25].

Some initial experimentation was done to determine the
best parameter settings for the algorithm. A crossover rate
of 0.6 and an overall mutation rate of1.0 were used. This
is only reasonable if the elite size is kept relatively high -
80 out of a population size of 100 proved to be a good com-
promise between a classical generational GA and the steady
state model used by Davis. Some of the TSP operators have
additional parameters which were fine-tuned by hand based
on single-operator runs of the algorithm. Details on these
parameter settings can be found in the original descriptions
of the operators (see table 1). The settings used were:

OX2 Maximum percentage of genes to move: 0.95
POS Maximum percentage of genes to fix: 0.05
VR Maximum percentage of population that can be

chosen as parents: 0.25
Vote threshold: 0.05

SM Maximum size of random sub-tour (in percentage
of genome size): 0.5

All operator probabilities were initially set to1/NrOfOps.
The parameters involved in controlling the adaptation
scheme were set as follows:

P S W M I
90% 15% 100 10 1

which were inspired by the values that Davis proposed. The
robustness of the algorithm to variations in these setting is
however rather high, and other values gave equally good
results.

5 Results

All pairwise combinations of mutation and crossover oper-
ators were applied to the 3 TSP problems. For each of these
combinations, a simple tournament selection scheme was
used. In table 2 the combination with the best average per-
formance is compared with the results of the AOSGA using
all operators. The results on gr48 are based on 1000 repeti-
tions, while only 100 repetitions were conducted for the two
other problems. Mean values are given with the standard er-
ror in parentheses. Execution time ranged from 3 seconds
for the gr48 problem to 6-7 minutes for the pcb442 problem
(Processor: Xeon 1.7 GHz). A graphical overview of the
comparisons is presented in figure 2.

To get an impression of the convergence speed of the
AOSGA, progress during the course of a run was logged
and compared to the progress of 4 of the best performing
fixed-op algorithms. Results are found in figure 2(d-f). The
graphs indicate that convergence speed of the AOSGA is
not worse than that of the average fixed-op algorithm. For
the larger problems, it would even seem that the AOSGA
reaches acceptable solutions somewhat faster than the fixed-
op algorithms.



5000

6000

7000

8000

9000

10000
D

M
+

P
M

X
E

M
+

P
M

X
IS

M
+

P
M

X
S

IM
+

P
M

X
IV

M
+

P
M

X
S

M
+

P
M

X
D

M
+

C
X

E
M

+
C

X
IS

M
+

C
X

S
IM

+
C

X
IV

M
+

C
X

S
M

+
C

X
D

M
+

O
X

1
E

M
+

O
X

1
IS

M
+

O
X

1
S

IM
+

O
X

1
IV

M
+

O
X

1
S

M
+

O
X

1
D

M
+

O
X

2
E

M
+

O
X

2
IS

M
+

O
X

2
S

IM
+

O
X

2
IV

M
+

O
X

2
S

M
+

O
X

2
D

M
+

P
O

S
E

M
+

P
O

S
IS

M
+

P
O

S
S

IM
+

P
O

S
IV

M
+

P
O

S
S

M
+

P
O

S
D

M
+

H
E

U
E

M
+

H
E

U
IS

M
+

H
E

U
S

IM
+

H
E

U
IV

M
+

H
E

U
S

M
+

H
E

U
D

M
+

E
R

E
M

+
E

R
IS

M
+

E
R

S
IM

+
E

R
IV

M
+

E
R

S
M

+
E

R
D

M
+

M
P

X
E

M
+

M
P

X
IS

M
+

M
P

X
S

IM
+

M
P

X
IV

M
+

M
P

X
S

M
+

M
P

X
D

M
+

V
R

E
M

+
V

R
IS

M
+

V
R

S
IM

+
V

R
IV

M
+

V
R

S
M

+
V

R
D

M
+

A
P

E
M

+
A

P
IS

M
+

A
P

S
IM

+
A

P
IV

M
+

A
P

S
M

+
A

P

A
ve

ra
ge

 fi
tn

es
s

fixed-op combinations
AOSGA
Optimal

(a) gr48

6000

8000

10000

12000

14000

16000

18000

0 10000 20000 30000 40000 50000

A
ve

ra
ge

 fi
tn

es
s

Evaluations

optimal
IVM+OX1
IVM+POS
ISM+HEU
IVM+HEU

AOSGA

(d) gr48

2000

3000

4000

5000

6000

7000

8000

9000

10000

D
M

+
P

M
X

IS
M

+
P

M
X

S
IM

+
P

M
X

IV
M

+
P

M
X

D
M

+
C

X
IS

M
+

C
X

S
IM

+
C

X
IV

M
+

C
X

D
M

+
O

X
1

E
M

+
O

X
1

IS
M

+
O

X
1

S
IM

+
O

X
1

IV
M

+
O

X
1

D
M

+
O

X
2

E
M

+
O

X
2

IS
M

+
O

X
2

S
IM

+
O

X
2

IV
M

+
O

X
2

D
M

+
P

O
S

E
M

+
P

O
S

IS
M

+
P

O
S

S
IM

+
P

O
S

IV
M

+
P

O
S

D
M

+
H

E
U

E
M

+
H

E
U

IS
M

+
H

E
U

S
IM

+
H

E
U

IV
M

+
H

E
U

S
M

+
H

E
U

D
M

+
E

R
E

M
+

E
R

IS
M

+
E

R
S

IM
+

E
R

IV
M

+
E

R
D

M
+

M
P

X
E

M
+

M
P

X
IS

M
+

M
P

X
S

IM
+

M
P

X
IV

M
+

M
P

X
S

M
+

M
P

X
D

M
+

V
R

IS
M

+
V

R
S

IM
+

V
R

IV
M

+
V

R
D

M
+

A
P

E
M

+
A

P
IS

M
+

A
P

S
IM

+
A

P
IV

M
+

A
P

A
ve

ra
ge

 fi
tn

es
s

fixed-op combinations
AOSGA
Optimal

(b) brg180

0

100000

200000

300000

400000

500000

600000

700000

800000

0 20000 40000 60000 80000 100000

A
ve

ra
ge

 fi
tn

es
s

Evaluations

optimal
IVM+PMX
IVM+OX2
IVM+POS

IVM+AP
AOSGA

(e) brg180

40000

60000

80000

100000

120000

140000

160000

180000

200000

D
M

+
P

M
X

E
M

+
P

M
X

IS
M

+
P

M
X

S
IM

+
P

M
X

IV
M

+
P

M
X

D
M

+
C

X
E

M
+

C
X

IS
M

+
C

X
S

IM
+

C
X

IV
M

+
C

X
D

M
+

O
X

1
E

M
+

O
X

1
IS

M
+

O
X

1
S

IM
+

O
X

1
IV

M
+

O
X

1
D

M
+

O
X

2
E

M
+

O
X

2
IS

M
+

O
X

2
S

IM
+

O
X

2
IV

M
+

O
X

2
D

M
+

P
O

S
E

M
+

P
O

S
IS

M
+

P
O

S
S

IM
+

P
O

S
IV

M
+

P
O

S
D

M
+

H
E

U
E

M
+

H
E

U
IS

M
+

H
E

U
S

IM
+

H
E

U
IV

M
+

H
E

U
S

M
+

H
E

U
D

M
+

E
R

E
M

+
E

R
IS

M
+

E
R

S
IM

+
E

R
IV

M
+

E
R

D
M

+
M

P
X

E
M

+
M

P
X

IS
M

+
M

P
X

S
IM

+
M

P
X

IV
M

+
M

P
X

S
M

+
M

P
X

D
M

+
V

R
E

M
+

V
R

IS
M

+
V

R
S

IM
+

V
R

IV
M

+
V

R
D

M
+

A
P

E
M

+
A

P
IS

M
+

A
P

S
IM

+
A

P
IV

M
+

A
P

A
ve

ra
ge

 fi
tn

es
s

fixed-op combinations
AOSGA
Optimal

(c) pcb442

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

A
ve

ra
ge

 fi
tn

es
s

Evaluations

optimal
SIM+OX2
SIM+POS
SIM+HEU
SIM+MPX

AOSGA

(f) pcb442

Figure 2: Fixed-op combinations vs. the AOSGA. (a-c) show the best
fitness averaged over all runs (algorithms with a fitness higher than
10000 are not shown), (d-e) show the average progress during the course
of a run.



6 Discussion

The results demonstrate that the two performance require-
ments are fulfilled. The AOSGA can competite with any
combination of single operators without a significant de-
crease in efficiency. The algorithm successfully manages
to identify valuable operators during the course of a run and
thereby eliminates the need to carry out such experiments
by hand.

Concerning the quality of the solutions that the algorithm
produces, table 2 and figure 2 indicate that the AOSGA ob-
tains results comparable to the best fixed-op GA. For the
two larger problems, the AOSGA converges to these results
significantly faster than it’s fixed-op counterparts.

As illustrated in figure 3 and 4, operator scheduling def-
initely takes place, and different operators alternately dom-
inate during a run. Since parameter settings for the in-
dividual operators were tuned for single-operator runs, all
operators were optimised for all-round best performance.
This might not be the optimal setting when the operators
are controlled by the AOSGA, which can schedule oper-
ators that are specialised for certain tasks (e.g. explo-
ration/exploitation). Introducing task division by special-
ising operators (e.g. coarse/fine-tuning) the potential of op-
erator scheduling could be exploited to a higher degree.

Futher experimentation should also be conducted con-
cerning the mechanism of adaptation itself. Incorporation
of operator probabilities as part of the genotype combined
with self-adaptation would require less bookkeeping than
the adaptive algorithm presented here. If the performance
of this alternative is comparable to the AOSGA, it would
therefore be preferable the somewhat cumbersome AOSGA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

pr
ob

ab
ili

ty

evaluations

DM
EM

ISM
SIM
IVM
SM

Figure 3: Probability distribution for the mutation operators
(gr48)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

pr
ob

ab
ili

ty

evaluations

PMX
CX

OX1
OX2
POS
HEU

ER
MPX

VR
AP

Figure 4: Probability distribution for the crossover operators
(gr48)

Acknowledgements

I would like to thank everyone at EVALife for their support
and valuable input during this study and the writing of this
paper.

Bibliography

[1] L. Davis, “Adapting operator probabilities in genetic
algorithms,” inProceedings of the Third International
Conference on Genetic Algorithms(J. D. Schaffer,
ed.), (San Mateo, CA), Morgan Kaufman, 1989.

[2] R. Thomsen and T. Krink, “Self-adaptive operator
scheduling using the religion-based ea,” inProceed-
ings of Parallel Problem Solving from Nature VII
(PPSN-2002), pp. 214–223, Springer Verlag, 2002.

[3] I. G. S.-K. Agoston E. Eiben and B. A. Thijssen,
“Competing crossovers in an adaptive ga framework,”
in Proceedings of the 1998 IEEE International Con-
ference on Evolutionary Computation, pp. 787–792,
1998.

[4] M. Srinivas and L. M. Patnaik, “Adaptive probabili-
ties of crossover and mutation in genetic algorithms,”
IEEE Transactions on Systems, Man, and Cybernetics,
vol. 24, no. 4, pp. 656–667, 1994.

[5] B. A. Julstrom, “What have you done for me lately?
Adapting operator probabilities in a steady-state ge-
netic algorithm,” inProceedings of the Sixth Interna-
tional Conference on Genetic Algorithms(L. Eshel-
man, ed.), (San Francisco, CA), pp. 81–87, Morgan
Kaufmann, 1995.

[6] A. Tuson and P. Ross, “Cost based operator rate adap-
tion: An investigation,” inParallel Problem Solving



from Nature – PPSN IV(H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, eds.), (Berlin),
pp. 461–469, Springer, 1996.

[7] D. E. Goldberg and R. Lingle Jr., “Alleles, loci, and
the traveling salesman problem,” inProceedings of
the First International Conference on Genetic Algo-
rithms and Their Applications(J. J. Grefenstette, ed.),
Lawrence Erlbaum Associates, Publishers, 1985.

[8] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A
study of permutation crossover operators on the trav-
elling salesman problem,” inGenetic algorithms and
their applications : Proc. of the second Int. Conf. on
Genetic Algorithms(J. J. Grefenstette, ed.), (Hillsdale,
NJ), pp. 224–230, Lawrence Erlbaum Assoc., 1987.

[9] L. Davis, “Applying adaptive algorithms to epistatic
domains,” inProceedings of the International Joint
Conference on Artificial Intelligence, vol. 1, pp. 161–
163, 1985.

[10] G. Syswerda,Schedule optimization using genetic al-
gorithms, ch. 21, pp. 332–349. 1991.

[11] J. J. Grefenstette,Incorporating problem specific
knowledge into genetic algorithms, pp. 42–60. 1987.

[12] D. Whitley, T. Starkweather, and D. Fuquay,
“Scheduling problems and traveling salesman: The
genetic edge recombination operator,” inProceedings
of the Third International Conference on Genetic Al-
gorithms(J. D. Schaffer, ed.), (San Mateo, CA), Mor-
gan Kaufman, 1989.

[13] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer,
“Evolution algorithms in combinatorial optimization,”
Parallel Computing, vol. 7, pp. 65–85, 1988.

[14] H. Mühlenbein, “Parallel genetic algorithms, popula-
tion genetics and combinatorial optimization,” inPro-
ceedings of the Third International Conference on Ge-
netic Algorithms(J. D. Schaffer, ed.), (San Mateo,
CA), Morgan Kaufman, 1989.

[15] M. P. P. Larrãnaga, C. M. H Kuijpers and R. H. Murga,
“Decomposing bayesian networks: triangulation of
the moral graph with genetic algorithms,”Statistics
and Computing (UK), vol. 7, no. 1, pp. 19–34, 1997.

[16] Z. Michalewicz, Genetic Algorithms + Data Struc-
tures = Evolution Programs. Berlin: Springer, 1992.

[17] W. Banzhaf, “The “molecular” traveling salesman,”
Biological Cybernetics, vol. 64, pp. 7–14, 1990.

[18] D. B. Fogel, “An evolutionary approach to the trav-
elling salesman problem,”Biological Cybernetics,
vol. 60, no. 2, pp. 139–144, 1988.

[19] J. H. Holland,Adpatation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan
Press, 1975.

[20] D. Fogel, “A parallel processing approach to a mul-
tiple travelling salesman problem using evolutionary
programming,” inProceedings of the Fourth annual
Symposium on Parallel Processing, (Fullerton, Cali-
fornia), pp. 318–326, April 1990.

[21] R. H. M. I. I. P. Larrãnaga, C. M. H. Kuijpers and
S. Dizdarevic, “Genetic algorithms for the travel-
ling salesman problem: A review of representations
and operators,”Artificial Intelligence Review, vol. 13,
no. 2, pp. 129–170, 1999.

[22] Y. Nagata and S. Kobayashi, “Edge assembly
crossover: A high-power genetic algorithm for the
travelling salesman problem,” inProceedings of the
Seventh International Conference on Genetic Algo-
rithms (ICGA97)(T. Bäck, ed.), (San Francisco, CA),
Morgan Kaufmann, 1997.

[23] G. Tao and Z. Michalewicz, “Inver-over operator for
the TSP,” inParallel Problem Solving from Nature –
PPSN V(A. E. Eiben, T. B̈ack, M. Schoenauer, and
H.-P. Schwefel, eds.), (Berlin), pp. 803–812, Springer,
1998. Lecture Notes in Computer Science 1498.

[24] H.-K. Tsai, J.-M. Yang, and C.-Y. Kao, “Solving trav-
eling salesman problems by combining global and lo-
cal search mechanisms,” inProceedings of the 2002
Congress on Evolutionary Computation CEC2002
(D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Green-
wood, H. Iba, P. Marrow, and M. Shackleton, eds.),
pp. 1290–1295, IEEE Press, 2002.

[25] G. Reinelt, “TSPLIB — a traveling salesman problem
library,” ORSA Journal on Computing, vol. 3, no. 4,
pp. 376–384, 1991.


