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Abstract. The implementation of an evolutionary algorithm necessar-
ily involves the selection of an appropriate set of genetic operators. For
many real-world problem domains, an increasing number of such oper-
ators is available. The usefulness of these operators varies for different
problem instances and can change during the course of the evolutionary
process. This motivates the use of adaptive operator scheduling (AOS)
to automate the selection of efficient operators. However, little research
has been done on the question of which scheduling method to use. This
paper compares different operator scheduling methods on the Travel-
ing Salesman Problem. Several new AOS techniques are introduced and
comparisons are made to two non-adaptive alternatives.
The results show that most of the introduced algorithms perform as well
as Davis’ algorithm while being significantly less cumbersome to imple-
ment. Overall, the use of AOS is shown to give significant performance
improvements – both in quality of result and convergence time.

1 Introduction

Genetic operators are the algorithmic core of evolutionary computation. The
quality of these operators is essential for the performance of the evolutionary
algorithms (EAs), and consequently, much research is done in this field. Partic-
ularly for combinatorial problems, domain knowledge is often essential to good
performance. Many heuristic operators have been described, and their number
continues to grow. Given their heuristic nature, the applicability of these oper-
ators often varies across different problems in the domain. For instance, certain
operators might fail to scale up gracefully, becoming computationally infeasible
for larger problem instances. Even though the literature might provide compar-
isons between operators on certain problem instances, the evolutionary program-
mer is left with a difficult choice of operator selection when designing an EA for
a new problem.

An elaborate manual comparison of all operators would provide an assess-
ment of the quality of the operators, but does not exploit the fact that the
usefulness of the operators often changes during the course of a single run. Fur-
thermore, dependencies between operators can exist and through interaction
multiple operators might provide better results than when applied alone.



In a previous study [1], I investigated whether adaptive operator scheduling
(AOS) can provide a solution to this problem. Experiments were done on in-
stances of the symmetrical Traveling Salesman Problem (TSP), a well known
NP-hard combinatorial problem for which a multitude of operators exist. It can
be defined as the search for a minimal Hamiltonian cycle in a complete graph,
and can be understood as the problem of visiting n cities (and returning to the
first), using the path of smallest total distance. The main concern in the orig-
inal investigation was that a large number of operators might slow down the
optimisation process compared to an algorithm using the optimal choice of op-
erators. It was shown that this concern was unfounded: the algorithm using AOS
converged as fast as the best combination of mutation and crossover operators
with equally good results. The AOS scheme used in these initial experiments
(Davis) was however rather cumbersome to implement. In this paper several al-
ternative methods of AOS are presented and compared on a selection of TSP
benchmark problems. It is shown that the presence of multiple operators signifi-
cantly improves performance. Furthermore, results indicate that the alternative
AOS methods perform as well as Davis’ method, and that simpler methods can
thus be used without a decrease in performance.

2 Adaptive Operator Scheduling

Angeline [2] has categorised adaptive evolutionary computation based on two
criteria: (1) the level at which adaptation is applied and (2) the nature of the
update rules. The level of adaptation specifies at which level the adapted pa-
rameters reside. For population-level adaptation, the parameters exist at the
population level, and thus apply to all individuals in the population. Likewise,
individual-level adaptation works on parameters local to each individual and
component-level adaptation has parameters for each component in the genotype
of an individual. Update rules are classified as being absolute, or empirical. This
last class also goes by the name of self-adaptation, which is the term that will
be used throughout this paper. Algorithms with absolute update-rules use fixed
guidelines to update parameter settings based on the current state of the pop-
ulation. Self-adaptive schemes use the selection pressure already present in the
evolutionary process to evolve better parameter settings, the underlying assump-
tion being that good individuals often have a good parameter setting.

The AOS algorithms described below represent different classes of Angeline’s
classification. Focus was on designing AOS algorithms that are easily imple-
mented, which is vital if AOS is to replace the manual comparison of individual
operators. The end of each description contains a list of the parameter settings
that were used for the algorithm. These settings were manually tuned based on
preliminary experiments.

2.1 The Operator Scheduling Algorithm by Davis

Davis’ algorithm from 1989 [3] represents one of the first efforts at operator
adaptation in EAs. It uses population-level adaptation and absolute update rules



on a steady state EA. More specifically, a global set of operator probabilities
is adapted based on the performance of the operators in the last generations
(adaptation window). The performance of operators is measured by the quality
of the individuals they produce. Newly created individuals are rewarded if their
fitness surpasses the fitness of all other individuals in the population. The size
of this reward is determined by the amount of the improvement. Furthermore,
a certain percentage of the reward is recursively passed on to the individual’s
ancestors (to a certain maximum depth M). This reward strategy is motivated by
the fact that a series of suboptimal solutions is often necessary in order to reach
a better solution, and that corresponding operators should thus be rewarded.

With certain intervals, the rewards are used to update the probability setting.
For each operator i:

p′

i
= (1 − S) ∗ pi + S ∗

rewardi

totalReward
, (1)

where p′

i
is the new probability for operator i and S is the Shift factor, determin-

ing the influence that the current update should have on the total probability
setting.

In the present study a slightly modified version of Davis’ algorithm is used.
Lower bounds are set on the probabilities to avoid extinction of operators, and
in adaption phases where no improvement is made the probabilities are shifted
slightly toward their initial positions. Furthermore, the steady state evolution-
ary approach is replaced by a generational elitist EA. Preliminary experiments
showed that these modifications gave better results and faster convergence (re-
sults not shown).

Parameter settings: Window of adaptation (W ): 100 individuals, Interval
of adaptation (I): 20–50 evaluations, Shift percentage (S): 15%, Percentage of
reward to pass back (P ): 90%, Number of generations to pass back (M): 10.

2.2 The ADOPP Algorithm

Julstrom’s Adaptive Operator Probabilities algorithm (ADOPP) [4] from 1995
is very similar to Davis’ approach. The main difference between the two is the
way in which ancestral information is represented. While Davis provides each
individual with links to their parents, Julstrom explicitly provides each indi-
vidual with a tree specifying which operators were used to create its ancestors.
Davis’ approach is more effective since the tree structure is implicitly present
in the individuals and does not have to be copied every time new individuals
are created. However, Davis’ algorithm has some disadvantages which Julstrom
avoids. Since the ancestral information in Davis’ algorithm is stored in the in-
dividuals, information is lost when individuals die. The depth of the implicit
trees are therefore somewhat unreliable and, in general, Davis’ algorithm is only
able to maintain a moderate amount of ancestral information. Furthermore, the
individuals in Davis’ algorithm require a great deal of bookkeeping to sustain
pointers only to living individuals, an inconvenience which is avoided in ADOPP.



Another difference between the two approaches is that Davis rewards individu-
als that improve the overall best individual in the population, whereas Julstrom
only requires individuals to exceed the median individual.

When converting operator rewards to a new probability setting, ADOPP uses
a greedy variant of the update rule by Davis (corresponding to S=100%). For
each operator i:

p′

i
=

rewardi

totalReward
, (2)

where p′

i
is the new probability for operator i.

Parameter settings: Window of adaptation (QLEN ): 100 individuals, Interval
of adaptation (I): 1 generation, Percentage of reward to pass back (DECAY ):
80%, Height of trees (DEPTH ): 4.

2.3 Adaptation Using Subpopulations (Subpop)

This approach was inspired by the work by Schlierkamp-Voosen and Mühlenbein
[5] on competing subpopulations, in which different subpopulations represent dif-
ferent operator strategies. This idea can be used as an AOS method by letting
each subpopulation represent the use of a single operator. The EA thus main-
tains a number of subpopulations equal to the number of operators. For each of
these populations, only one operator can be applied to the individuals currently
residing there. During the course of a run, the relative sizes of the subpopulations
are altered depending on their fitness. The fitness of a subpopulation is based
on the fitness of its best individuals over the last 10 generations (as proposed by
Schlierkamp-Voosen and Mühlenbein [5]).

In each adaptation phase the best subpopulation is rewarded with an increase
in size, and receives a donation of individuals from all other subpopulations. To
avoid the extinction of operators, only subpopulations with a size above some
fixed lower bound are forced to make this donation. Large subpopulations create
more offspring and thus have a larger probability of improving the global best
fitness. This results in a strong bias towards larger subpopulations, making it
difficult for smaller populations to compete. To counter this effect, a random
migration scheme is used: At certain intervals some of the best individuals from
the best population migrate to a randomly selected population.

Subpop is a population-level adaptation algorithm using absolute update
rules. The parameters adapted are the same as for Davis and ADOPP (global
operator probabilities).

Parameter settings: Evaluation interval (E): 4 generations, Shift amount (SA):
10%, Migration interval (M): 4 generations, Migration amount (MA): 5 individ-
uals, Interval of adaptation (I): 1 generation.

2.4 Self-Adaptive Operator Scheduling (SIDEA, SPDEA)

The algorithms in this section are novel methods of operator adaptation partly
inspired by the work of Spears in 1995 [6]. In Spears’ paper, scheduling is done



between two crossover operators by adding a single bit to the genotype indicating
the preferred operator. This bit is used either locally (at the individual-level) or
globally (at the population-level) to determine which operator is to be applied.
When used locally, the choice of operator is made based on the bit-setting of
the parent(s) involved. When used globally, the average bit-setting of the whole
population is used as a measure of quality to base this decision on.

I generalised Spears’ method by expanding the single bit to an array of n

probabilities, each denoting the probability that a certain operator is applied.
Unlike Spear’s approach, the representation of the scheduling information is not
compatible with that of the problem representation and therefore cannot be
modified automatically as part of the genotype. It was therefore necessary to
design a specialised variation operator for this task.

The problem of finding the optimal prob-
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Fig. 1. The DE mutation oper-
ator for two dimensions. Three
random individuals x1, x2, x3

are chosen and a temporary in-
dividual x

′ is created by taking
the vectorial difference between
x3 and x2, multiplying it by F ,
and adding it to x1.

ability setting for n operators is a numeri-
cal optimisation problem so in principle, any
variation operator from this domain would
suffice. However, given the fact that the prob-
abilities must all be positive and sum to one,
only a small subset of the n-dimensional search
space constitutes legal solutions. If an arbri-
trary EA variation operator is used it would
be necessary to apply some repair scheme af-
ter each operation to ensure feasibility. To
avoid this I used an adapted version of the
variation operator used in Differential Evolu-
tion (DE) [7], which produces solutions that
are only rarely illegal. The DE variation op-
erator uses three individuals to create an off-
spring by applying a mutation step followed
by a crossover step. During the mutation step,
a new genotype x

′ is created by:

x
′ = x1 + F ∗ (x3 − x2) . (3)

The crossover step subsequently creates a new individual by combining com-
ponents from x

′ with components from the original individual. For our purpose,
however, the mutation step alone has exactly the properties we need: Selecting
three random points on a hyperplane and adding the vectorial difference between
two of them to the third results in a new position on the plane. In other words,
given three legal probability settings it will produce a new one with probabilities
that sum to 100%. An example of this behaviour for two dimensions is given in
Fig. 1. Equation (3) of course gives no guarantees that the entries of the created
vector have values between zero and one. This is however easily fixed by forcing
values that lie outside the domain back to the nearest boundary. The mutation
operator is used whenever new offspring is to be created.



As with Spears’ algorithm, two different levels of adaptation exist. If individual-
level adaptation is used, the probability setting of the child is used to choose
an operator. If adaptation works at the population-level, the average of all
probability-settings in the population is used to select an operator. The two
versions of the algorithm will be referred to as the SIDEA and the SPDEA
respectively.

Parameter setting: F-value for the DE mutation: 0.5.

2.5 Operator Scheduling Inspired by Evolution Strategies (SIESA)

Self-adaptation has been applied in the Evolution Strategies (ES) community
since 1977 [8]. Here it was used to adapt the behaviour of the mutation operator
during the course of a run. The mutation operator consists of an addition of
normally distributed values zi ∼ N(0, σ′2

i
) to the components in the genotype.

The variances σ′2

i
are adapted so that the effect of mutation is different for dif-

ferent individuals and for different components of the genotype. Again, under
the assumption that individuals of high fitness often have good parameter set-
tings, the algorithm can find the good variance setting using only the selection
pressure already present in the algorithm.

Taking self-adaptation one step further, we now use the ES mutation step as
an alternative to the DE mutation operator described in the previous section.
This means that the evolutionary algorithm will simultaneously optimise the
problem at hand, an operator probability setting, and a setting determining the
optimal variance for the mutation of this probability setting.

Since the search space defined by the operator probability settings is highly
interdependent, it is meaningless to adapt each variance σ2

i
at component-level.

Instead one value σ is associated with each individual. The necessary mutation
equation from the ES literature [9] is

σ′ = σ ∗ exp(s0), (4)

where s0 ∼ N
(

0, τ2

0

)

and τ2

0
= 1

n
. Since this mutation operator does not have

the convenient properties of the DE operator, the probability-setting has to be
normalised after each mutation. It is difficult to tell exactly how big the impact
of this normalisation is compared to the effect of the mutation itself.

Parameter setting: τ2

0
: 1

n
(ES default value [9]).

3 Operators

Table 1 lists the 18 operators used in the experiments. They all operate on
a path representation of the TSP. The selection of operators was inspired by
Larrañaga’s survey paper from 1999 [10]. The list was extended by two opera-
tors of recent date that have been shown to have good performance: The Edge
Assembly Crossover [11] and the Inver-over operator [12]. For complete refer-
ences the reader is referred to the paper covering my previous experimentation
on AOS for the TSP [1].



Table 1. The Operators

Displacement Mutation (DM) Order Based Crossover (OX2)
Exchange Mutation (EM) Position Based Crossover (POS)
Insertion Mutation (ISM) Heuristic Crossover (HEU)
Simple Inversion Mutation (SIM) Edge Recombination Crossover (ER)
Inversion Mutation (IVM) Maximal Preservative Crossover (MPX)
Scramble Mutation (SM) Voting Recombination Crossover (VR)
Partially mapped Crossover (PMX) Alternating Position Crossover (AP)
Cycle Crossover (CX) Inver-over operator (IO)
Order Crossover (OX1) Edge Assembly Crossover (EAX)

4 Experiments and Results

Initial experiments showed that the algorithms benefitted from larger popula-
tions as the problem instances grew, confirming the findings by Nagata and
Kobayashi [11]. The large populations are however only partly replaced in each
generation. The ADOPP variant uses a steady state approach, generating only
one new individual in each generation (in agreement with Julstrom’s original
paper [4]). The other algorithms were run with elite sizes of 75% – 90% of the
population, which proved to give best results in initial experiments. With these
extensive elite sizes the large populations function mainly as libraries of genetic
material which maintain a certain diversity in the population. The population
sizes and number of iterations used are listed in Table 2.

Table 2. Population sizes and iterations used for the different problems

gr48 brg180 pcb442 nrw1379 pr2392 pcb3038

Population Size 500 600 2000 4000 4500 5000
Iterations 60,000 350,000 500,000 1,200,000 1,200,000 1,700,000

When implementing an AOS algorithm, one has the choice of including all op-
erators in one pool or dividing mutation and crossover operators in two separate
pools. For Davis, ADOPP, SIDEA and SPDEA, both variants were implemented
and included in the test set. The versions using separate pools are labelled with
the suffix S. Two non-adaptive algorithms were included in order to evaluate
the absolute value of AOS. The Uniform algorithm includes all operators but
uses equal probabilities for the application of them. The EAX only uses only the
EAX operator.

For all algorithms, 100 runs were done on 6 different TSP instances, all
taken from the TSP benchmark problem collection TSPLIB [13]. The sizes of
the problems ranged from 48 to 3038 cities. Table 3 presents the average results
of these trials.

To give an impression of convergence speed Fig. 2 shows the average best
fitness over time for the brg180 problem. The general pattern of this figure is
recurrent across the range of tested problems: The EAX only algorithm performs
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significantly worse than all others, the Uniform algorithm performs almost as
good as the adaptive algorithms, and among the adaptive algorithms, Subpop
tends to have the fastest convergence. Figure 3 shows the operator probabilities
over time for the SIDEA algorithm applied on the brg180 problem. This figure is
also representative for all cases: Across both problem instances and AOS methods
all algorithms consistently prioritise the EAX operator in the final phase. In the
initial phases the greedy nature of the other operators (typically HEU) is most
effective to gain fast fitness improvements. This clearly improves performance
compared to the algorithm applying the EAX operator exclusively.

Based on the data in Table 3, it is not possible to single out one algorithm as
being the overall best. However, a certain categorisation of the algorithms can
be made. Across the range of problems, the Davis( S), SIDEA( S), SPDEA( S)
and Subpop algorithms all performed about equally well. The data responsible
for the mean values in the table were found to be approximately normally dis-
tributed. Standard deviations and confidence intervals for the results were com-
puted. Although there were non-overlapping confidence intervals between results
in Table 3, and differences thus can be seen as being statistically significant, it
varies from problem to problem which algorithm performed best.

The ADOPP and SIESA algorithms performed slightly worse than this first
class. For ADOPP’s case this might be ascribed to the algorithm being more
greedy than, for instance, the Davis algorithm, and therefore might overcom-
pensate bad operators when they by chance improve the overall solution. On
the other hand, it seems that the SIESA adapts too slowly. This is not entirely
surprising, since it is using self-adaptation at two levels. Another reason could
be the somewhat disruptive renormalisation after each operation.

Perhaps the most striking results in Table 3 concern the two non-adaptive
algorithms. The EAX only algorithm performs significantly worse than any of
the other algorithms. This suggests that the EAX operator is first and foremost
a fine-tuning operator and should be used along with some more exploration-
oriented operators. The Uniform algorithm, on the other hand, performs remark-
ably well. Especially the convergence graphs show surprisingly fast convergence.



It should however be noted that the convergence graphs show the population’s
best fitness over time and that no information about the general state of the
population can be derived from these graphs. The apparent conflict between
the Uniform algorithm’s good convergence speed and the somewhat worse end-
results of this algorithm indicates that even though the algorithm is able to
sustain a good elite of individuals, it does not have sufficient diversity in its best
individuals to find optimal solutions. The smaller number of good individuals
is naturally explained by the fact that in the end phase, the EAX operator is
applied with only a fraction of the probability that it receives by the adaptive
algorithms.

Generally, the adaptive operator scheduling methods did not present a signif-
icant computational burden for the EAs involved. The different algorithms had
similar execution times, except for the ADOPP variants, which were somewhat
slower due to their steady state design.

Table 3. Average results for 100 runs

gr48 brg180 pcb442 nrw1379 pr2392 pcb3038

Davis S 5046.00 1950.30 50778.21 56689.46 378067.16 137758.94
Davis 5046.36 1950.00 50781.23 56685.04 378055.16 137752.69
SIDEA S 5047.77 1950.20 50778.14 56699.82 378084.82 137779.77
SIDEA 5046.52 1950.30 50778.07 56715.85 378336.45 137793.97
SPDEA S 5046.33 1950.40 50778.21 56698.31 378097.53 137781.66
SPDEA 5046.00 1950.30 50778.07 56691.05 378074.36 137755.16
SIESA 5047.21 1952.60 50781.83 56695.51 378098.00 137765.02
Subpop 5046.40 1950.60 50778.14 56682.53 378057.28 137743.03
Uniform 5048.34 1952.80 50778.91 56826.32 379570.91 137956.90
ADOPP S 5046.66 1951.80 50778.56 56702.35 378100.71 137779.00
ADOPP 5046.66 1951.70 50778.35 56689.42 378079.92 137745.00
EAX only 5046.00 1951.30 59558.96 128619.73 2823286.85 677724.28

Optimal 5046.00 1950.00 50778.00 56638.00 378032.00 137694.00

5 Discussion

Overall, the results show that performance is significantly improved when a
multitude of operators are used. Even when one operator (e.g. EAX) is suspected
to outperform all others, it might not be optimal throughout the whole run, and
adaptive operator scheduling can exploit this fact to increase performance.

Based on the comparison of operator scheduling algorithms in this study, it
is not possible to single out one of them as being the best. Many of the differ-
ent methods performed equally well, and thus indicate that the selection of an
operator scheduling method may be based on considerations as implementation
efficiency or personal taste. The Davis algorithm requires significant bookkeep-
ing and was found to be somewhat elaborate to implement, while especially the
SIDEA, SPDEA, SIESA and Subpop variants were implemented fairly easily.



Also the fact that the self-adaptive variants have only few parameters to tune
might be a reason to favour these over the others. As an extreme case, even
a uniform selection between operators seems to provide reasonable results at
minimal implementation costs. Naturally, experiments should be carried out on
other problem domains to determine the value of operator scheduling in general
and establish whether the above conclusions hold for other domains.
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T., Schoenauer, M., Schwefel, H.P., eds.: Parallel Problem Solving from Nature –
PPSN V, Berlin, Springer (1998) 803–812

13. Reinelt, G.: TSPLIB — a traveling salesman problem library. ORSA Journal on
Computing 3 (1991) 376–384


