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Abstract

A novel method to model and predict the location and orien-
tation of alpha helices in membrane- spanning proteins is pre-
sented. It is based on a hidden Markov model (HMM) with
an architecture that corresponds closely to the biological sys-
tem. The model is cyclic with 7 types of states for helix core,
helix caps on either side, loop on the cytoplasmic side, two
loops for the non-cytoplasmic side, and a globular domain
state in the middle of each loop. The two loop paths on the
non-cytoplasmic side are used to model short and long loops
separately, which corresponds biologically to the two known
different membrane insertions mechanisms. The close map-
ping between the biological and computational states allows
us to infer which parts of the model architecture are impor-
tant to capture the information that encodes the membrane
topology, and to gain a better understanding of the mecha-
nisms and constraints involved. Models were estimated both
by maximum likelihood and a discriminative method, and a
method for reassignment of the membrane helix boundaries
were developed. In a cross validated test on single sequences,
our transmembrane HMM, TMHMM, correctly predicts the
entire topology for 77% of the sequences in a standard dataset
of 83 proteins with known topology. The same accuracy was
achieved on a larger dataset of 160 proteins. These results
compare favourably with existing methods.

Introduction
Prediction of membrane-spanning alpha helices in proteins
is a frequent sequence analysis objective. A large portion
of the proteins in a genome encode integral membrane pro-
teins (Himmelreich et al. 1996; Frishman & Mewes 1997;
Wallin & von Heijne 1998). Knowledge of the presence and
exact location of the transmembrane helices is important for
functional annotation and to direct functional analysis.

Transmembrane helices are substantially easier to predict
than helices in globular domains. Predicting 95% of the
transmembrane helices in the ‘correct’ location is not un-
usual (Cserzo et al. 1997; Rost et al. 1995). By ‘correct’
is meant that the prediction overlaps the true location. The
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reason for this high accuracy is that most transmembrane
alpha helices are encoded by an unusually long stretch of
hydrophobic residues. This compositional bias is imposed
by the constraint that residues buried in lipid membranes
must be suitable for hydrophobic interactions with the lipids.
The hydrophobic signal is so strong that a straightforward
approach of calculating a propensity scale for residues in
transmembrane helices and applying a sliding window with
a cutoff already performs quite well.

In addition to knowing the location of a transmembrane
helix, knowledge of its orientation, i.e. whether it runs in-
wards or outwards, is also important for making functional
inferences for different parts of the sequence. The orienta-
tions of the transmembrane helices give the overall topology
of the protein.

It is known that the positively charged residues arginine
and lysine play a major role in determining the orientation
as they are mainly found in non-transmembrane parts of the
protein (‘loops’) on the cytoplasmic side (von Heijne 1986;
Jones, Taylor, & Thornton 1994; Persson & Argos 1994;
Wallin & von Heijne 1998), often referred to as the ‘positive-
inside rule’. Since the rule also applies to proteins in the
membrane of intracellular organelles (Gavel et al. 1991;
Gavel & von Heijne 1992), we shall use the terms ‘cyto-
plasmic’ and ‘non-cytoplasmic’ for the two sides of a mem-
brane.

The difference in amino acid usage between cytoplasmic
and non-cytoplasmic loops can be exploited to improve the
prediction of transmembrane helices by validating potential
transmembrane helices by the charge bias they would pro-
duce (von Heijne 1992). Despite this relatively consistent
topogenic signal, correct prediction of the location and ori-
entation of all transmembrane segments has proved to be a
difficult problem. On a reasonably large dataset of single
sequences, a topology accuracy of 77% has been reported
(Jones, Taylor, & Thornton 1994), and aided with multiple
alignments 86% (Rost, Fariselli, & Casadio 1996). The dif-
ficulty in predicting the topology seems to be partly caused
by the fact that the positive-inside rule can be blurred by
globular domains in loops on the non-cytoplasmic side that
contain a substantial number of positively charged residues.



It has been shown that positively charged residues in short
loops guide the orientation of helices by preventing translo-
cation across the membrane (von Heijne 1994). However,
long loops containing positively charged residues do not
necessarily arrest the translocation, and may be transferred
across the membrane by a special mechanism. This has been
shown in bacteria (Andersson & von Heijne 1994).

The first method to predict the complete topology of trans-
membrane proteins, TopPred (von Heijne 1992), applies two
empirical hydrophobicity cutoffs to the output of a sliding
trapezoid window in order to compile a list of certain and
putative transmembrane helices. The combination of puta-
tive helices that produces the strongest enrichment of posi-
tively charged residues in loops on the cytoplasmic side is
selected as the best prediction. Loops that are longer than
70 residues are ignored.

A potential drawback of TopPred and other methods that
depend on fixed hydrophobicity thresholds for considering a
segment as a transmembrane helix is that some helices may
be missed that fall just under the threshold. This is not un-
usual in proteins with many membrane-spanning helices that
form a bundle in which non-hydrophobic residues may make
contacts between helices.

A number of approaches have been explored to improve
prediction accuracy. Memsat (Jones, Taylor, & Thornton
1994) performs a constrained dynamic programming that
incorporates hydrophobicity and topogenic signals to find
the optimal location and orientation of a given number of
transmembrane helices. It uses separate propensity scales
for residues in the head and the tail region of the mem-
brane (allowed to be 4 and 17-25 residues respectively). The
highest scoring number of transmembrane helices is selected
as the best prediction. PHDhtm (Rost, Fariselli, & Casa-
dio 1996) uses a neural network to predict transmembrane
segments. A second postprocessing step is applied to find
the best consistent combination of these segments that max-
imises the positive residue content on the cytoplasmic side.
PHDhtm automatically generates a multiple alignment of the
query and its homologues, and performs the prediction on
the multiple alignment, which improves the accuracy sig-
nificantly. TMAP (Persson & Argos 1997) scans either sin-
gle sequences or multiple alignments for peaks in propensity
curves for the head and tail regions, and uses the frequency
biases of twelve kinds of amino acids to predict the topol-
ogy.

In this paper, we introduce the probabilistic framework
of the hidden Markov model (HMM) to transmembrane he-
lix prediction. Hidden Markov models have been used suc-
cessfully in computational biology to model e.g. the statisti-
cal structure of genomes (Churchill 1992), protein families
(Krogh et al. 1994; Eddy 1996) and gene structure (Kulp et
al. 1996; Krogh 1997). The basic principle is to define a set
of states, each corresponding to a region or specific site in
the proteins being modelled. In the simplest case, a model
for a transmembrane protein may consist of three states: one
for inside loops, one for transmembrane regions, and one
for outside loops. Each state has an associated probability
distribution over the 20 amino acids characterising the vari-
ability of amino acids in the region it models. The states are

connected to each other in a biologically reasonable way, so
for instance the state for inside loop is connected to itself,
because loops may be longer than 1, and to the transmem-
brane helix state, because after an inside loop a helix begins.
A ‘transition probability’ is associated with each transition.
The amino acid probabilities and the transition probabilities
are learned by a standard inference techniques that computes
the maximum posterior probabilities given a prior and the
observed frequencies.

By defining states for transmembrane helix residues and
other states for residues in loops, residues on either side of
the membrane, and connecting them in a cycle, we can pro-
duce a model that in architecture closely resembles the bi-
ological system we are modelling. If the model parameters
are tuned to capture the biological reality, the path of a pro-
tein sequence through the states with the highest probability
should be able to predict the true topology. Since the HMM
method does not employ any fixed empirical cutoffs or rules,
and since the optimal path through the HMM is found in a
single step, it should be more flexible to handle cases where
several signals need to be combined to find the true topol-
ogy. For instance, a segment that normally would not be
considered a transmembrane helix due to poor hydropho-
bicity may still be predicted if the surrounding topogenic
signals strongly support it. Such helices are fairly common
in multi-spanning proteins where the transmembrane helices
have hydrophilic interactions with each other.

We believe that apart from achieving high prediction ac-
curacy, the fact that the model corresponds well to the biol-
ogy is also very important. We have therefore only sampled
architectures that make biological sense. By varying the
model we can explore what architectural features are most
important for successful prediction, and thus learn biologi-
cally meaningful rules. For instance, we can easily explore
what the optimal head region length is, and whether separate
paths for long or short loops is better than one.

This paper describes the basic principles of TMHMM and
presents prediction results on single sequences. We have
not extended it to work on multiple alignments here, partly
because that would make evaluation of the algorithm per se
harder.

Methods
Architecture of the HMM
The basic architecture of TMHMM is shown in Figure 1.
There are three main locations of a residue: in the trans-
membrane helix core (in the hydrophobic tail region of the
membrane), in the transmembrane helix caps (in head re-
gion of the membrane), and in loops. Due to the different
residue distributions on the different sides however, we use
seven different states: one for the helix core, two for caps on
either side, one for loops on the cytoplasmic side, one each
for short and long loops on the non-cytoplasmic side, and
one for ‘globular domains’ in the middle of each loop. The
amino acid emission probabilities of all states of the same
type are ‘tied’ to each other, i.e. they are estimated collec-
tively.

The transmembrane helix is modelled by two cap regions
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Figure 1: The structure of the model used in TMHMM. A) The overall layout of the model. Each box corresponds to one or
more states. Parts of the model with the same text are tied, i.e. their parameters are the same. Cyt. means the cytoplasmic side
of the membrane and non-cyt. the other side. B) The state diagram for the parts of the model denoted helix core in A. From
the last cap state there is a transition to core state number 1. The first three and the last two core states have to be traversed,
but all the other core states can be bypassed. This models core regions of lengths from 5 to 25 residues. All core states have
tied amino acid probabilities. C) The state structure of globular, loop, and cap regions. In each of the three regions the amino
acid probabilities are tied. The three different loop regions are all modelled like this, but they have different parameters in some
regions.

3



of 5 residues each, surrounding a core region of variable
length 5-25 residues. This allows for helices 15-35 residues
long. The flanking cap regions have their own amino acid
distributions (one for the cytoplasmic side and one for the
non-cytoplasmic side), but they are labelled the same way as
helical core residues both during training and prediction. Al-
though the model contains two sets of transmembrane states
to model paths going inwards and outwards, all their param-
eters are mirrored and tied to each other. There are 21 vari-
able transition probabilities to model the length distribution
of the helical core, and because they sum to one it corre-
sponds to 20 free parameters.

The loops between the helices are modelled by modules
that contain 2 � 10 states in a ladder configuration, and one
self-looping state. The idea is that the 10 first states should
contain most of the topogenic signals (bias in amino acid us-
age) while larger, globular domains are modelled in a sim-
ple way by the single self-looping state, which has a neutral
amino acid distribution.

Long loops on the non-cytoplasmic side that contain
globular domains appear to have different properties than
short loops. They do not consistently exhibit the sparse-
ness in positively charged residues observed in short non-
cytoplasmic loops. We therefore model non-cytoplasmic
loops by two different pathways. The HMM thus contains
two parallel loop modules on that side. During training,
loops on the non-cytoplasmic side longer than 100 residues
are given a special label that directs them to the appropri-
ate module. Each loop module contains 21 free transition
probabilities.

The total number of free parameters in the entire model is
thus 7 � 19 � 20 � 3 � 21 � 216. This should be compared
to neural networks, that usually contain tens of thousands
(Rost, Fariselli, & Casadio 1996).

Training the HMM
The estimation of the model parameters proceeded in stages.

In the first stage, the model was estimated by the Baum-
Welch reestimation procedure, which is the standard method
for maximum likelihood estimation of HMMs, see for in-
stance (Rabiner 1989; Krogh et al. 1994; Durbin et al.
1998). However, the reestimation was done from labeled
sequences as described in (Krogh 1994; 1997), because that
allows one to use ‘soft boundaries’ of transmembrane he-
lices (see below). To avoid local maxima of the likeli-
hood, a simulated annealing scheme was used that allows
unfavourable models to be sampled with some probability.
This was done by adding noise to the model parameters, and
then decreasing the level of this noise by 5% per iteration,
see e.g. (Hughey & Krogh 1996). Compared to HMMs of
e.g. protein families, TMHMM contains very few parame-
ters and training is therefore usually quick and reproducible.
After convergence, the most likely path of a query sequence
is calculated with the Viterbi algorithm (Rabiner 1989;
Krogh et al. 1994; Durbin et al. 1998).

The precise end of a transmembrane helix is usually only
approximately known. Many transmembrane segments are
therefore annotated as a segment of somewhat arbitrary
length, often 21 residues. A technique to accommodate mis-

placed borders in the training data is to ‘dilute’ the labels
by unlabelling a few states at each label boundary (i.e. be-
tween loop and membrane) in order to allow some freedom
in choosing the state. We used three unlabelled residues on
each side of a border since this appeared to give the best re-
sults (although there is very little difference between 2 and
3). It means that during training, the exact helix boundaries
are put where they fit the current model the best.1

In the second stage of model estimation, the first model
was used to relabel the data. The labeling was diluted as
described above, but this time 5 residues were unlabeled to
each side of a helix boundary (but such that at least one la-
bel remained in both the left and right region), see Figure 2.
Then the first model was used to predict transmembrane seg-
ments consistent with the remaining labels. More formally,
this means that the most probable path through the model is
found, subject to the constraint that the prediction conforms
with the diluted labels. This gives a new labeling consistent
with the important structure of the protein, but with the ex-
act boundaries moved such that it fits the model better, see
Figure 2.

The second model was trained from the relabeled se-
quences with no further unlabeling. In this stage there was
no need for simulated annealing, because there was no un-
certainty about boundaries.

In both of the first stages the models were weakly reg-
ularised. This was done by adding ‘pseudocounts’ to the
estimated counts used in the re-estimation procedure. When
regularising this way, the estimation procedure can be seen
as maximum aposteriori estimation instead of maximum
likelihood, see e.g. (Krogh et al. 1994; Durbin et al. 1998).
The distribution of amino acids were found for transmem-
brane helices in the training set and these numbers were used
as pseudocounts in the part of the model for transmembrane
segments. Similarly for the loop regions on both the cy-
toplasmic and the non-cytoplasmic side. Only the model
of ‘globular domains’ was strongly regularised by adding
pseudocounts of 1000 times a standard neutral background
amino acid distribution. This was done in order to prevent
the model from learning some skewed distribution of amino
acids in globular domains due to biasses in the training data.
The size of these psudocounts is arbitrary, but changing it
has almost no effect on performance. In fact, one can fix
the distribution in the globular state (corresponding to ex-
tremely large pseudocounts) without changing performance
significantly. The parameters for the initial models were ob-
tained by normalising the pseudocounts appropriately (be-
fore adding noise).

In the third stage the second model was trained fur-
ther by a method for ‘discriminative’ training (Krogh 1994;
1997). This training method aims at maximising the prob-
ability of the correct prediction rather than optimising the
model of the protein. Discriminative training is more prone
to over-fitting, and therefore this model was regularised
heavily by the maximum likelihood model. The size of the

1In the Baum-Welch algorithm, the reestimated model is actu-
ally a result of summing over all possible boundaries consistent
with the diluted labeling.
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TAL6_HUMAN

MCYGKCARCIGHSLVGLALLCIAANILLYFPNGETKYASENHLSRFVWFFSGIVGGGLLMLLPAFVFIGL
Correct iiiiiiiiiMMMMMMMMMMMMMMMMMMMMMoooooooooooooooMMMMMMMMMMMMMMMMMMMMMMMMM
Unlabeled iiii..........MMMMMMMMMMM..........ooooo..........MMMMMMMMMMMMMMM.....
Relabeled iiiiiiiiiiMMMMMMMMMMMMMMMMMMMMMMMooooooooooooooMMMMMMMMMMMMMMMMMMMMMMM

EQDDCCGCCGHENCGKRCAMLSSVLAALIGIAGSGYCVIVAALGLAEGPLCLDSLGQWNYTFASTEGQYL
Correct iiiiiiiiiiiiiiiiiiMMMMMMMMMMMMMMMMMMMMMMMMMMMMoooooooooooooooooooooooo
Unlabeled .....iiiiiiii..........MMMMMMMMMMMMMMMMMM..........ooooooooooooooooooo
Relabeled iiiiiiiiiiiiiiiiiiiiMMMMMMMMMMMMMMMMMMMMMMMooooooooooooooooooooooooooo

LDTSTWSECTEPKHIVEWNVSLFSILLALGGIEFILCLIQVINGVLGGICGFCCSHQQQYDC
Correct oooooooooooooooooooooMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMiiiiiiiiii
Unlabeled oooooooooooooooo..........MMMMMMMMMMMMMMMMMMMMM..........iiiii
Relabeled ooooooooooooooooooooooooMMMMMMMMMMMMMMMMMMMMMMMiiiiiiiiiiiiiii

Figure 2: First line after the sequence shows the labeling of the sequence as obtained from Swissprot. Cytoplasmic is labeled
by ‘i’ (inside), transmembrane helices by ‘M’, and non cytoplasmic by ‘o’ (outside). The second line shows the labeling after
the boundaries have been unlabeled by 5 residues to each side. Unlabeled positions are indicated with a ‘.’. Finally a prediction
is shown, which was obtained by forcing the prediction to conform with the labels, but let the program choose freely in the
unlabeled regions.

pseudocounts were a constant times the probabilities found
in the second stage. For the small set of proteins the constant
was 400 and for the large database it was 600. The results
are not very sensitive to this parameter, which was chosen
after a few experiments. For the predictions, the one-best
algorithm (Schwarz & Chow 1990) was used, because it is
known to work better with discriminative training (Krogh
1997).

Datasets
We used two datasets. For comparison with other methods,
we used the set of 83 proteins originally compiled by (Jones,
Taylor, & Thornton 1994), as provided by Rost et al. (1996).
It is marginally different from the dataset used by Jones et
al., which we were unable to completely reconstruct. It con-
sists of 38 multi-spanning and 45 single-spanning proteins
whose topologies have been experimentally determined. We
refer to this set as set 1. We have also compiled a larger
set of 160 proteins, most of which have experimental topol-
ogy data, which we refer to as set 2. It contains 108 multi-
spanning and 52 single-spanning proteins. Most of the ex-
periments to analyse the effect of different model architec-
tures and training procedures were performed on set 2.

It should be noted that nearly all proteins with an ‘ex-
perimentally determined’ topology have been analysed with
biochemical and genetic methods that are not always reliable
(Traxler, Boyd, & Beckwith 1993). Only a very small num-
ber of membrane protein structures have been determined at
an atomic resolution, and even in these cases the exact lo-
cation of the membrane is not obvious (Wallin et al. 1997).
Given the uncertainty in the currently available data, per-
fect prediction accuracy is thus unrealistic. To avoid incor-
rect data as much as possible, we did not include proteins in
set 2 for which different experiments had yielded conflict-
ing topologies and where it was not obvious which topology

was closer to the truth.
The accuracy of the HMM was tested by 10-fold cross

validation. For this the datasets were divided into 10 sets of
about equal size so that no sequence was more than 25%
identical to a sequence in another set (in a Needleman-
Wunsch alignment). The HMM was trained on nine sets and
predictions were made on the remaining set. This was re-
peated for all 10 different partitions of test and training sets,
and in the end the accuracy was calculated on the predictions
obtained on the test sets.

Results
Accuracy of the best model
The accuracy of the best model architecture is listed in Table
1, along with the results we obtained with Memsat. Both
were applied to single sequences only. For comparison we
also give the results of PHDhtm reported in (Rost, Fariselli,
& Casadio 1996) for the set of 83 sequences (using multiple
alignments). A predicted helix is counted as correct if it
overlaps by at least 5 residues with a true helix (using an
overlap of 1 instead of 5 only affect results marginally).

In the comparison between TMHMM and Memsat, only
the TMHMM results were properly cross validated. The
authors of Memsat claim to have obtained an accuracy of
77.1% correct topologies in a cross validated experiment on
a dataset nearly identical to set 1, although we get a slightly
lower number even without cross validation. When tested
on the 77 sequences in set 2 that are not in set 1, Memsat
had an accuracy of only 56%.

The architecture of transmembrane proteins
Many facts about the architecture of transmembrane proteins
have been estimated from biochemical evidence and knowl-
edge about the physicochemical properties of membranes
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Method Training Stage of Correct Correct Single TM Single TM
set size training topology locations sensitivity specificity

TMHMM 83 1 60 (72.3%) 62 (74.7%) 95.6% 96.4%
83 2 63 (75.9%) 65 (78.3%) 96.2% 96.5%
83 3 64 (77.1%) 69 (83.1%) 96.2% 97.6%

MEMSAT 83 63 (75.9%) 67 (80.7%) 96.8% 94.6%
PHDhtm 83 (85.5%) (88.0%) 98.8% 95.2%
TMHMM 160 1 106 (66.3%) 122 (76.3%) 95.4% 97.1%

160 2 120 (75.0%) 133 (83.1%) 96.8% 97.5%
160 3 123 (76.9%) 134 (83.8%) 97.1% 97.7%

MEMSAT 160 108 (67.5%) 118 (73.8%) 93.3% 95.6%

Table 1: Transmembrane topology prediction accuracy of TMHMM, MEMSAT, and PHDhtm. The TMHMM values were
measured in cross validated experiments while MEMSAT was run on the complete training set with default propensities. All
predictions for TMHMM and MEMSAT were made using single sequences only, whereas PHDhtm uses multiple alignments.
Results for PDHhtm are from (Rost, Fariselli, & Casadio 1996). The Stages of training are explained in the text.
Correct topology: proteins for which all transmembrane segments and their orientations are correctly predicted. Correct lo-
cations: proteins for which all transmembrane segments are correctly predicted, regardless of their orientation. Single TM
sensitivity: correctly predicted segments/true segments. Single TM specificity: correctly predicted segments/total predicted
segments.

and amino acids. Here we have the opportunity to derive
some rules of transmembrane helices by experimenting with
various HMM specifications and observing which architec-
ture performs best in a cross validated test.

Length of helix cap region. The part of the helix that lies
in the head region of the lipid bilayer contains many po-
lar and charged residues that make contact to the phosphate
groups of the lipids. The length of this region is often arbi-
trarily taken as being four residues (Jones, Taylor, & Thorn-
ton 1994). In TMHMM, the cap is modelled with a number
of states with a separate amino acid distribution, flanking the
central helix region (See Figure 1). We experimented with
cap lengths between 0 and 7 residues, which is the maxi-
mum length if we allow helices down to 15 residues. We
found that with less than 4 residues the accuracy drops sig-
nificantly, while caps of 4-7 residues gave the same result.

Helix caps on different sides of the membrane are treated
separately. Some prediction methods assume that the cap
regions on both sides of the membrane should have the same
amino acid distributions. However, we observed an accuracy
reduction of up to 10% of proteins with all helices predicted
correctly, and of up to 5% of correctly predicted topologies
from tying the cap distributions together.

Loop architecture. Positively charged residues are pre-
dominantly found in loops on the cytoplasmic side. How-
ever, long globular domains with positively charged residues
are equally often found on both sides of the membrane
(Sipos & von Heijne 1993). Some prediction algorithms
take this into account, for instance by ignoring any loop
longer than 70 residues (von Heijne 1992), or by only con-
sidering the 25 residues nearest predicted transmembrane
helices (Rost, Fariselli, & Casadio 1996).

In TMHMM, loops are modelled with two types of states:
a number of states for the helix- flanking topogenic se-
quence, and a single self-looping state for larger globular
domains (see Figure 1). The topogenic states are arranged

in a ladder that captures the length distribution of short to-
pogenic loops. Since it is believed that there may be two dif-
ferent mechanisms for translocating short and long ‘globular
domain’ loops across the membrane, we tried using two al-
ternative paths on the non-cytoplasmic side in TMHMM. We
found that this increased the accuracy by 6-14%, when train-
ing the ‘short’ path on loops shorter than 100 residues and
the ‘large globular domain’ path on all longer loops. There
does however not seem to be an advantage in having two
alternative loop paths on the cytoplasmic side; this reduced
the accuracy by 2-11%. The highest accuracy was observed
at loop ladder lengths between 2x10 and 2x15.

Availability
A model specification of TMHMM including all optimised
parameters is available from

http://www.cbs.dtu.dk/krogh/TMHMM/
The used datasets, including topology-labels and our divi-
sions into cross validation subsets are also provided. We
plan to make a prediction server available via the World
Wide Web. A binary UNIX program for finding the most
likely topology of a query sequence can also be retrieved
upon request. Please see the WWW page for details.

Discussion
Our HMM-based method embodies many conceptual and
methodological aspects of previous methods. The main
virtues are that the model architecture maps closely to the
biological system, and that everything is done in the proba-
bilistic framework of HMMs, that is, we do not have to de-
velop a specialised dynamic programming algorithm or post
processing method.

The accuracy of the TMHMM is high compared to MEM-
SAT, particularly on dataset 2. We were unable to compare
TMHMM with PHDtmh on dataset 2, but could compare
to published figures for dataset 1. Given that the results
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of TMHMM were based on single sequences, we were sur-
prised to see that it obtained about the same single TM accu-
racy as did PHDthm using multiple alignments. For overall
topology, the accuracy of TMHMM is however not quite as
high as with PHDtmh on this dataset.

At present, TMHMM only reports the most likely path
of a sequence through the model. In many cases, however,
it is desirable to report a number of top-scoring matches,
particularly if they have similar scores. We plan to add this
feature to TMHMM in the future. We also plan to make use
of multiple alignments to increase the accuracy further.

We have here worked with a mix of transmembrane pro-
teins from different sources and of different types, but have
treated them as a unified set in order to find general princi-
ples. There is however evidence for differences in the mem-
brane insertion mechanism between prokaryotic and eukary-
otic proteins (Gafvelin et al. 1997). Preliminary experi-
ments did not suggest that splitting the data up into these
groups improved accuracy. This may partly be due to the
fact that the subsets became too small for efficient training.
It has also been suggested that single-spanning transmem-
brane proteins have distinct properties from multi-spanning
proteins (Jones, Taylor, & Thornton 1994). In fact, MEM-
SAT uses different propensity tables for these types of mod-
els. It would in principle be possible to adapt our HMM to
choose between two such specialised models. It is not clear
whether this would be as much of an advantage to TMHMM
as it is to MEMSAT, however. Since MEMSAT always pre-
dicts at least one helix, it may be needed for increased strin-
gency. The most likely path through the HMM (i.e. the pre-
diction) on the other hand, may contain no transmembrane
helices at all.
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