
“bio093” — 2003/6/26 — page 1 — #1

BIOINFORMATICS APPLICATIONS NOTE Vol. 19 no. 0 2003, pages 1–3
DOI: 10.1093/bioinformatics/btg299

PDB file parser and structure class implemented
in Python

Thomas Hamelryck1,2,∗ and Bernard Manderick2

1Department of Cellular and Molecular Interactions, Vlaams Interuniversitair Instituut voor
Biotechnologie (VIB) and 2Computational Modeling Lab (COMO), Department of
Computer Science, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium

Received on January 21, 2003; revised on March 3, 2003; accepted on May 10, 2003

ABSTRACT
Summary: The biopython project provides a set of bioinform-
atics tools implemented in Python. Recently, biopython was
extended with a set of modules that deal with macromolecular
structure. Biopython now contains a parser for PDB files that
makes the atomic information available in an easy-to-use but
powerful data structure. The parser and data structure deal
with features that are often left out or handled inadequately
by other packages, e.g. atom and residue disorder (if point
mutants are present in the crystal), anisotropic B factors,
multiple models and insertion codes. In addition, the parser
performs some sanity checking to detect obvious errors.
Availability: The Biopython distribution (including source
code and documentation) is freely available (under the Biopy-
thon license) from http://www.biopython.org
Contact: thamelry@vub.ac.be

1 INTRODUCTION
Python (http://www.python.org) is a freely available, object
oriented, interpreted language that is easy to use yet very
powerful. The biopython project (http://www.biopython.org)
provides a set of reusable software modules written in Python
that mainly deal with sequence retrieval, analysis and manip-
ulation (Chapman and Chang, 2000). The software described
here extends biopython with a powerful set of modules
that deal with macromolecular structure, including a PDB
(Berman et al., 2000) file parser, a powerful Structure
class and modules that deal with three-dimensional (3D)
neighbor lookup and the identification of polypeptides. Freely
available, reusable code to handle macromolecular struc-
ture data is far and between. Currently available solutions
include the C++ library PDBLib (Chang et al., 1994) and
the Python-based MMTK toolkit (Hinsen, 2000). Python is
also used in the powerful macromolecular visualization PMV
packages (Sanner, 1999; Sanner et al., 1999; Coon et al.,
2001) and PyMol (DeLano, 2002). The biopython modules

∗To whom correspondence should be addressed.

described here should be a valuable addition to the available
software.

2 OVERALL DESCRIPTION
A crystal structure is represented using a structure/model/
chain/residue/atom (or SMCRA) hierarchic data structure
(the Structure class), whose structure is shown in
Figure 1. This data structure forms a very convenient
framework to access the atomic data in a PDB file. In
the hierarchical SMCRA data structure, a child object
(i.e. Atom, Residue, Chain, Model) can always
be extracted from its parent (i.e. Residue, Chain,
Model, Structure, respectively) by using an identifier
as a key, e.g.

model=structure[0]
chain=model[‘A’]
residue=chain[1]
atom=residue[‘CA’]

These identifiers are:

• Model: The rank of the model in the PDB file, starting
from 0. Crystal structures typically only have a single
model, while NMR structures typically have several.

• Chain: The chain identifier, e.g. "A".

• Residue: A tuple composed of three parts: the hetero
field, the sequence identifier and the insertion code, e.g.
("H_GLC", 45, "0"). The hetero field is a string : it
is ‘W’ for waters, "H_" followed by the residue name (e.g.
"H_GLC" for a glucose hetero residue with residue name
"GLC") for other hetero residues and blank for standard
amino and nucleic acids. The hetero field is included to
avoid problems with hetero and non-hetero residues that
have the same sequence identifiers, which is very com-
mon in the PDB. The insertion code serves to facilitate
the comparison with a reference protein, and is fairly
rarely used. For non-hetero residues that have no inser-
tion codes, the sequence identifier alone can also be used

Bioinformatics 19(0) © Oxford University Press 2003; all rights reserved. 1



“bio093” — 2003/6/26 — page 2 — #2

T.Hamelryck and B.Manderick

Structure

Model

Chain

Residue

Atom

DisorderedResidue

DisorderedAtom

Entity

DisorderedEntityWrapper

2..n

2..n

Fig. 1. UML (Fowler, 1999) diagram of the SMCRA data structure used to represent the atomic data. Full lines with triangle arrows indicate
inheritance, full lines with diamonds indicate aggregation and dotted lines indicate interface realization.

as the identifier as a shortcut, e.g. (" ", 120, " ")
can be replaced by 120 alone.

• Atom: The atom name, e.g. "CA".

It is also possible to get a list of all children of a parent, e.g.:

residue_list=chain.get_list()

The parent can also be obtained from a child, e.g.:

chain=residue.get_parent()

Disordered atoms or residues (i.e. in the case of point
mutations) are represented by DisorderedAtom and
DisorderedResidue classes, which hide the complex-
ity associated with disorder by forwarding all method calls
to one of the wrapped Atom or Residue objects. Dis-
ordered residues arise when two or more point mutants of
one polypeptide chain are present in the crystal (e.g. PDB
file 1EN2, which has a Gly/Ser point mutation at position
A10). The user can specify which of the disordered residues
or atoms is ‘seen’ when using the SMCRA data structure. This
approach corresponds to the chain of responsibility design
pattern (Gamma et al., 1995), and effectively shields the user
from the complexity of disorder while still providing a full
representation.

The data structure described above allows to access the
atomic data in a PDB file in a very convenient manner.

For example, the Atom class contains methods to extract
the temperature factor (isotropic or anisotropic), coordinates,
occupancy, etc. In addition, code is available to locate all
atoms within a certain distance of each other, to perform dis-
tance neighbor lookup [both implemented using a KD tree
data structure (Bentley, 1975) implemented in C++], and to
extract all polypeptides from a PDB file.

It is a well-known fact that many PDB files in the
Brookhaven database do not respect the prescribed syntax,
or are difficult to interpret unambiguously. Therefore, some
common problems are identified and either cause an exception
(if the PERMISSIVE flag is set to 0, which is the default; see
below) or are automatically corrected. The former problems
include multiple residues or atoms with the same identifier,
while the latter include disordered atoms with blanc altlocs.
Although many of these problems are fixed in the mmCIF files
available from the PDB, wide use of these files likely awaits
the corresponding XML versions.

3 EVALUATION
The PDB parser was evaluated by parsing 5405 PDB files from
the PDB_SELECT database (Hobohm and Sander, 1994),
which contains a representative list of protein structures (April
2002 release, 90% sequence identity cutoff). Obsolete PDB
entries were left out. The PERMISSIVE flag of the parser

2



“bio093” — 2003/6/26 — page 3 — #3

Python PDB parser

was set to 1. Parsing all files took 3 h and 50 min on a 1.6 GHz
PC, or on average about 2.5 s per structure. All files could
be parsed successfully. Some interesting and non-trivial cases
are mentioned below.

Structure 1EN2 contains five fully disordered residues due
to the presence of point mutants in the crystal (Gly/Ser A10,
Ala/Gly A14, Trp/Arg A16, Gly/Ser A80 and Asn/Lys A81).
This is correctly interpreted, and the residues in question are
stored in DisorderedResidue objects.

A common error in PDB files is the occurrence of residues
with identical identifiers (present in 0.8% of the parsed PDB
files). Water residues with identical residue identifiers were
detected in numerous PDB files (e.g. PDB file 1AE9 contains
97 water residue pairs with identical identifiers, presumably
due to missing chain identifiers). In structure 1AZZ, amino
acid D27 is defined twice. Upon inspection it turns out that
the second residue labeled D27 is located in between residues
D46 and D48, and should thus presumably be renamed to D47.
A similar situation exists in 1BD2, where Glu B48 should
presumably be Glu B47. In 1BE3, a duplicate residue Leu A3
(presumably Leu A203) is present between residues A202 and
A204. Duplicated atoms are also abundant (present in 1.6%
of the parsed PDB files), in most cases due to missing altloc
identifiers. In all those cases, a warning is generated and the
duplicated residues or atoms are left out (if PERMISSIVE=1)
or an exception is generated (if PERMISSIVE=0).

4 USAGE EXAMPLE
The following example prints a list of all residues in the PDB
file 1fat.pdb that contain a disordered ‘CA’ atom:

from PDBParser import PDBParser
parser=PDBParser(PERMISSIVE=1)
structure=parser.get_structure("1fat", "1fat.pdb")
for model in structure.get_list():

for chain in model.get_list():
for residue in chain.get_list():

if residue.has_id("CA"):
ca_atom=residue["CA"]
if ca_atom.is_disordered():

print residue

5 CONCLUSIONS
The PDB parser and its associated data structure described
above is a powerful, complete, very easy-to-use and freely
available tool to extract atomic data from a PDB file. This
will make it e.g. possible for crystallographers derive simple
statistics from the PDB in a straightforward way, or for struc-
tural bioinformaticians to build more complex applications

based on the available code. One of the main shortcom-
ings is the fact that the modules only deal with the atomic
data, and not with the information in the PDB header (which
contains, e.g. information on refinement, space group, pro-
tein, etc.). Another drawback is speed: since Python is an
interpreted language, its execution speed is lower than for
compiled languages like C++ (e.g. parsing the structure of the
large ribosomal subunit 1FKK which contains about 65 000
atoms takes about 30 s on a 1.6 GHz PC). For most applica-
tions however, the modules are fast enough. New structure
related features will be added to biopython in the future, and
contributors to this open source project are welcome.

ACKNOWLEDGEMENTS
The authors thank all Biopython contributors. T.H. is sup-
ported by the Horizontale onderzoeksactie—inverse pro-
tein folding of the VUB. Additional support from the EU
(TEMBLOR, FW5 1999/C381/06) is acknowledged.

REFERENCES
Bentley,J. (1975) Multidimensional binary search trees used for

associative searching. Commun. ACM, 18, 509–517.
Berman,H., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.,

Weissig,H., Shindyalov,I. and Bourne,P. (2000) The Protein Data
Bank. Nucleic Acids Res., 28, 235–242.

Chang,W., Shindyalov,I., Pu,C. and Bourne,P. (1994) Design and
application of PDBlib, a C++ macromolecular class library.
Comput. Appl. Biosci., 10, 575–586.

Chapman,B. and Chang,J. (2000) Biopython: python tools for
computational biology. ACM SIGBIO Newslett., 20, 15–19.

Pls provide
page range.Coon,S., Sanner,M. and Olson,A. (2001) Re-usable Compon-

ents for Structural Bioinformatics. In 9th International Python
Conference.

DeLano,W. (2002). The PyMOL Molecular Graphics System.
DeLano Scientific, San Carlos, CA, USA.

Fowler,M. (1999) UML Distilled. Addison-Wesley, New York.
Gamma,E., Helm,R., Johnson,R. and Vlissides,J. (1995) Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series, Addison-
Wesley, New York.

Hinsen,K. (2000) The molecular modeling toolkit: a new approach
to molecular simulations. J. Comp. Chem., 21, 79–85.

Hobohm,U. and Sander,C. (1994) Enlarged representative set of
protein structures. Protein Sci., 3, 522–524.

Sanner,M. (1999) Python: a programming language for software
integration and development. J. Mol. Graph Model, 17, 57–61.

Sanner,M., Duncan,B., Carrillo,C. and Olson,A. (1999) Integrat-
ing computation and visualization for biomolecular analysis: an
example using python and AVS. In Proceedings of the Pacific
Symposium in Biocomputing, pp. 401–412.

3


