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ABSTRACT In the seeds of legume plants 
a class of sugar-binding proteins can be found, 
generally called legume lectins. In this paper 
we present the crystallization of phytohemag- 
glutinin-L (PHA-L), a glycosylated lectin from 
the seeds of the common bean (Phaseolus vul- 
garis). Single PHA-L crystals were grown by 
vapor diffusion, using PEG as precipitant. The 
protein crystallizes in the monoclinic space 
group C2, and diffracts to a resolution of 2.7 A. 
The unit cell parameters are a=106.3 A, 
b=121.2 A, c=90.8 A, and p=93.7". The asym- 
metric unit probably contains one PHA-L tet- 
ramer. Crystals of a recombinant nonglycosy- 
lated form of PHA-L, grown under identical 
conditions, and crystals of the native PHA-L, 
grown in the presence of isopropanol, did not 
survive the mounting process. 
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INTRODUCTION 

Lectins are proteins of nonimmune origin that 
bind complex carbohydrates specifically and revers- 
ibly, often with hemagglutinating properties. They 
are very abundant in nature, and can be found in a 
wide variety of plants and animals. Structural biol- 
ogists are using lectins as a model to understand the 
general principles and mechanisms of protein-car- 
bohydrate interactions. The most extensively stud- 
ied lectins are the lectins found in the seeds of the 
legume plants.' Their physiological function in the 
plant still remains unsure, but involvement in de- 
fense against predation' and interaction with 
Rhizobium symbionts have been suggested., De- 
spite the highly conserved tertiary structure of these 
lectins, their quaternary structures and sugar spec- 
ificities differ considerably. The currently solved 
structures reveal that the monomers can associate 
into a number of different types of tetramers (con- 
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canavalin A,, peanut lectin5) and dimers (lentil lec- 
tin: lectin IV from Griffonia s imp l i~ i fo l iu ,~  Eryth- 
rina corullodendron lectin'). In the seeds of the 
common bean (Phuseolw vulgaris) a protein fraction 
can be found with hemagglutinating and sugar 
binding properties, called phytohemagglutinin 
(PHA). It consists of five different tetrameric glyco- 
proteins, composed of two different types of subunits 
associated in all possible combinations. These sub- 
units are the leucoagglutinating L-type subunit 
(252 AA) and the erythroagglutinating E-type sub- 
unit (254 AA),9 and the five possible tetramers 
formed are E,, E,L, E'L,, E,L,, and L,. The L-type 
and E-type subunits are both members of a family of 
four different polypeptides encoded by four tightly 
linked genes, generally referred to as the phytohe- 
magglutinin family of bean proteins. This family 
further consists of arcelin" (a protein with entomo- 
toxic properties) and an a-amylase inhibitor" (in- 
hibiting a-amylases of animal origin). Phytohemag- 
glutinin-L (PHA-L) consists solely of four L-type 
subunits. Each subunit is N-glycosylated at  two dif- 
ferent sites, with consensus sequence Asn-X-Serl 
Thr. It possesses a high-mannose type sugar at- 
tached a t  Asn-12, and a complex type sugar a t  
Am-60." The minimal structural unit for high- 
affinity binding is the pentasaccharide GalPl+ 
4GlcNAc~1+2(Gal~l+4GlcNAc~1+6)Man, which 
is found in tetra- and triantennary complex type oli- 
go saccharide^.'^ Because of the notorious difficul- 
ties in crystallizing glycoproteins, we decided to 
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crystallize both native (glycosylated) and recombi- 
nant (nonglycosylated) PHA-L. 

MATERIALS AND METHODS 
Protein Expression and Purification 

For the expression of PHA-L in maturing canola 
(Brassica napis) seeds, we excised the chimerical 
phaseolin/PHA-L gene from binary vector con- 
structs, previously used for transforming tobacco 
with a mutant of PHA-L that has two mutated sugar 
attachment sites,14 and introduced it into pBlue- 
script (Stratagene). This allowed the addition of the 
BamHI site at the 3' end of the gene. Finally we 
inserted the gene as a HindIIIIBamHI fragment into 
the binary vector pCGN1578,15 resulting in 
pCGN3832. This construct was used to transform 
the Brassica napus cultivar 211/8,16 and transgenic 
plants were regenerated. These plants expressed 
high levels of nonglycosylated PHA-L in their seeds. 
The seeds were ground and the resulting fine pow- 
der was suspended in 20 ml of PBS per g powder. 
The suspension was stirred overnight at 4°C. Since 
the seeds contain a considerable amount of oil, the 
suspension was defatted by centrifuging three times 
at 12,OOOg for 15 min a t  4"C, and filtering the su- 
pernatant over a piece of cloth. The recombinant 
PHA-L was isolated from this extract by affinity ad- 
sorption on porcine thyroglobulin-sepharose, as de- 
scribed by Felsted et  al.17 The protein was trans- 
ferred from the elution buffer to PBS with the aid of 
a PD-10 column (Sephadex G-25M, Pharmacia). 
Further concentration of the purified recombinant 
PHA-L was accomplished by ultrafiltration in an 
Amicon cell (Millipore filter, MW cut-off 10 kDa). 
The concentration of the protein was determined by 
measuring the absorption at 280 nm, assuming an 
absorption of 1.0 for a protein concentration of 1.0 
mg/ml and a 1.0 cm path length. Starting from 50 g 
of ground seeds, the purification yielded 50 mg re- 
combinant, nonglycosylated PHA-L. The solution 
was stored at -20°C a t  a protein concentration of 5 
mg/ml. 

Native (glycosylated) PHA-L was purchased from 
Sigma. The lyophilized powder was dissolved in dis- 
tilled deionized water to a suitable concentration for 
the crystallization trials. The purity of the samples 
was judged by gel electrophoresis in 15% polyacryl- 
amide running gels. This yielded two diffuse bands 
very close together around 35 kDa for the native 
PHA-L solution. The recombinant, nonglycosylated 
PHA-L solution showed one major band around 26 
kDa, and a very faint minor band just below the 
first. 

Crystallization 
Suitable crystallization conditions for both the 

glycosylated and the nonglycosylated recombinant 
PHA-L were screened by vapor diffusion using the 
hanging drop method. The droplets were prepared 

on silanized coverslips, by mixing 5 pl protein solu- 
tion and 5 p1 bottom solution. The best crystals for 
both the native and the recombinant PHA-L were 
obtained with a bottom solution containing 8% (w/v) 
PEG 6 kDa (Janssen Pharmaceutical) and 100 mM 
Tris, brought to pH 8.5 with HC1, and a protein so- 
lution of 5 mg/ml. These crystals were obtained after 
1 week of incubation a t  4°C or a t  room temperature. 
The latter showed visible signs of degradation after 
3 weeks, while the former remained stable in the 
mother liquor. For the native PHA-L, a second set of 
conditions, which yielded crystals with a different 
habit, was found. In this case, the protein concen- 
tration was 10 mg/ml. Bottom solutions containing 
isopropanol in a 20 to 30% range (v/v) and 100 mM 
Na-citrate, brought to pH 5.6 with citric acid, 
yielded crystals after an  incubation of 1 to 3 weeks 
at 4°C. 

X-Ray Diffraction Study 
Crystals of native PHA-L, grown at room temper- 

ature in the presence of PEG, were transferred from 
a hanging drop into a 0.5-mm glass capillary tube. 
Diffraction analysis was performed on an  Enraff- 
Nonius FAST area detector, using CUK, radiation 
generated by a rotating anode X-ray generator (40 
kV, 98 mA), and filtered by a Ni filter. The crystal to 
detector distance was 120 mm. Autoindexing was 
done using the MADNESS software packet." The 
recombinant PHA-L crystals, and the native PHA-L 
crystals grown in the presence of isopropanol, did 
not survive the mounting process. During the 
mounting of the native PHA-L crystals grown in the 
presence of isopropanol, evaporation of the mother 
liquor and precipitation on the crystals occurred, 
rendering them useless for further work. The recom- 
binant PHA-L crystals cracked upon withdrawal of 
the mother liquor. 

RESULTS AND DISCUSSION 
The crystals of native, glycosylated PHA-L (Fig. 

lA), grown in the presence of PEG at room temper- 
ature, could be used to record a useful X-ray diffrac- 
tion data set. These crystals were monoclinic, space 
group C2, with cell parameters a = 106.3 A, b = 121.2 
A, c=  90.8 A, p = 93.7". The unit cell volume is con- 
sistent with one PHA-L tetramer in the asymmetric 
unit, corresponding to a crystal volume per protein 
mass (V,) of 2.1 A3/Da and a solvent content of ap- 
proximately 42.4%. This falls well within the range 
of the solvent content of other protein  crystal^.^' A 
total of 67,416 intensities between 14.96 and 2.70 A 
was reduced to 27,844 unique reflections, with a 
merging R-factor of 0.10. The statistics of the data 
collection are given in Table I. 

Crystallization of extensively glycosylated pro- 
teins faces considerable difficulties. Heterogeneity 
of glycosylation and the inherent flexibility of the 
carbohydrate moieties, which are present on the sur- 
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Fig. 1. Microphotographs of typical crystals from (A) the  native PHA-L grown in the presence of PEG 6K, 
(B) the nonglycosylated recombinant PHA-L grown in the presence of PEG 6K, and (C) the native PHA-L 
grown in the presence of isopropanol. See the text for details. 

TABLE I. Data Collection Statistics of the Native PHA Crystal 

Resolution (A) 
14.98-7.51 
7.51-5.68 
5.68-4.75 
4.75-4.17 
4.17-3.76 
3.76-3.45 
3.45-3.20 
3.20-3.01 
3.01-2.84 
2.84-2.70 
Total 

Number of 
observed reflections 

2149 
4257 
8401 
9795 
8016 
6830 
6965 
7005 
7014 
6984 

67416 

Number of Completeness 
unique reflections (%I 

1246 95.9 
1864 96.6 
2317 96.9 
2700 97.4 
2929 94.2 
3102 90.9 
3287 89.2 
3428 87.0 
3468 83.0 
3503 79.5 

27844 88.9 

Rmer,e* 
0.040 
0.078 
0.080 
0.088 
0.097 
0.085 
0.124 
0.177 
0.262 
0.355 
0.099 

face of the protein, often impair the formation of a 
sufficiently homogeneous crystal. PHA-L has about 
10% wlw attached carbohydrate. Therefore we de- 
cided to try to crystallize a recombinant, nonglyco- 
sylated form of PHA-L as well as the native form. 
Surprisingly, it was possible to obtain a sufficient 
number of good quality crystals from the native, gly- 
cosylated PHA-L, while the crystals from the recom- 
binant, nonglycosylated form (Fig. lB), grown under 
identical conditions, turned out to be very fragile. 
The latter cracked upon withdrawal of the mother 
liquor during the mounting process and could sub- 
sequently not be used to record a data set. Damage 
during the mounting process also occurred with the 
native PHA-L crystals grown in the presence of iso- 
propanol as a precipitant (Fig. 1C). These crystals 
show a habit that differs from the habit of the native 
PHA-L crystals obtained in the presence of PEG. 

A possible explanation of the difference in quality 
between the crystals of the native and the recombi- 
nant PHA-L is that the two covalently bound sugars 
per monomer influence the packing of the subunits, 
as is the case with the Erythrina corallodendron lec- 

tin7 and lectin IV from Griffonia simplicifolia.6 In 
the latter two cases the presence of N-linked oli- 
gosaccharides is thought to impair the formation of 
the standard dimer, and to cause the lectin to adopt 
a different quaternary structure. Hence, it will be 
very interesting to verify the influence of the glyc- 
osylation on the quaternary structure, and to com- 
pare the structure of PHA-L with the other solved 
legume lectin structures. At present the structures 
of only two legume lectin tetramers have been 
solved with X-ray diffraction, namely concanavalin 
A3 and peanut l e ~ t i n . ~  The packing of the subunits 
in these tetramers differs considerably, despite the 
high structural homology of the monomers. The le- 
gume lectins are thus an  ideal model system to 
study the rules behind quaternary organization. 
Possibly a solved structure of PHA-L will reveal yet 
a third way for the legume lectin monomers to as- 
sociate into tetramers. This solved structure would 
then prove to be a valuable addition to the set of 
solved legume lectin structures. We are currently 
attempting to solve the structure of the native, gly- 
cosylated PHA-L. In addition, we are also attempt- 
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ing to grow crystals of native PHA-L complexed 
with various oligosaccharides. 
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