
MLSB 2008, Copenhagen 1

An Introduction to Factor Graphs

Hans-Andrea Loeliger

2

Definition

A factor graph represents the factorization of a function of several
variables. We use Forney-style factor graphs (Forney, 2001).

Example:

f (x1, x2, x3, x4, x5) = fA(x1, x2, x3) · fB(x3, x4, x5) · fC(x4).

x1

fA

x2

x3

fB

fC

x4

x5

Rules:

• A node for every factor.

• An edge or half-edge for every variable.

• Node g is connected to edge x iff variable x appears in factor g.

(What if some variable appears in more than 2 factors?)

3

Example:

Markov Chain

pXY Z(x, y, z) = pX(x) pY |X(y|x) pZ|Y (z|y).

pX

X

pY |X

Y

pZ|Y

Z

We will often use capital letters for the variables. (Why?)

Further examples will come later.

4

Message Passing Algorithms

operate by passing messages along the edges of a factor graph:

-

�

6
?

6
?

-

�

-

�

6
?

6
?

-

�

-

� . . .

-

�

6
?

-

�

6
?

-

�

5

A main point of factor graphs (and similar graphical notations):

A Unified View of Historically Different Things

Statistical physics:
- Markov random fields (Ising 1925)

Signal processing:
- linear state-space models and Kalman filtering: Kalman 1960. . .
- recursive least-squares adaptive filters
- Hidden Markov models: Baum et al. 1966. . .
- unification: Levy et al. 1996. . .

Error correcting codes:
- Low-density parity check codes: Gallager 1962; Tanner 1981;
MacKay 1996; Luby et al. 1998. . .
- Convolutional codes and Viterbi decoding: Forney 1973. . .
- Turbo codes: Berrou et al. 1993. . .

Machine learning, statistics:
- Bayesian networks: Pearl 1988; Shachter 1988; Lauritzen and
Spiegelhalter 1988; Shafer and Shenoy 1990. . .

6

Other Notation Systems for Graphical Models

Example: p(u, w, x, y, z) = p(u)p(w)p(x|u, w)p(y|x)p(z|x).

W
U

X =

Y

Z

Forney-style factor graph.

�
��
W

�
��
U

�
��X

�
��
Y

�
��
Z

Original factor graph [FKLW 1997].

�
��
W - �
��X

�
��
U

?

?

�
��
Y

- �
��
Z

Bayesian network.

�
��
W �
��X�

�
�

�
��

�
��
U

�
��
Y

�
��
Z

Markov random field.

7

Outline

1. Introduction

2. The sum-product and max-product algorithms

3. More about factor graphs

4. Applications of sum-product & max-product
to hidden Markov models

5. Graphs with cycles, continuous variables, . . .

8

The Two Basic Problems

1. Marginalization: Compute

f̄k(xk)
4
=

∑
x1, . . . , xn

except xk

f (x1, . . . , xn)

2. Maximization: Compute the “max-marginal”

f̂k(xk)
4
= max

x1, . . . , xn

except xk

f (x1, . . . , xn)

assuming that f is real-valued and nonnegative and has a maximum.
Note that

argmax f (x1, . . . , xn) =
(
argmax f̂1(x1), . . . , argmax f̂n(xn)

)
.

For large n, both problems are in general intractable
even for x1, . . . , xn ∈ {0, 1}.

9

Factorization Helps

For example, if f (x1, . . . , fn) = f1(x1)f2(x2) · · · fn(xn) then

f̄k(xk) =

(∑
x1

f1(x1)

)
· · ·
(∑

xk−1

fk−1(xk−1)

)
fk(xk) · · ·

(∑
xn

fn(xn)

)
and

f̂k(xk) =

(
max

x1

f1(x1)

)
· · ·
(

max
xk−1

fk−1(xk−1)

)
fk(xk) · · ·

(
max

xn
fn(xn)

)
.

Factorization helps also beyond this trivial example.

10

Towards the sum-product algorithm:

Computing Marginals—A Generic Example

Assume we wish to compute

f̄3(x3) =
∑

x1, . . . , x7

except x3

f (x1, . . . , x7)

and assume that f can be factored as follows:

f1

X1

f2

X2

f3

X3

f4

X4

f5

X5

f7

X7

f6

X6

11

Example cont’d:

Closing Boxes by the Distributive Law

f1

X1

f2

X2

f3

X3

f4

X4

f5

X5

f7

X7

f6

X6

f̄3(x3) =

(∑
x1,x2

f1(x1)f2(x2)f3(x1, x2, x3)

)

·

(∑
x4,x5

f4(x4)f5(x3, x4, x5)

(∑
x6,x7

f6(x5, x6, x7)f7(x7)

))

12

Example cont’d: Message Passing View

f1

X1

f2

X2

f3

X3
- �

f4

X4

f5

X5
�

f7

X7

f6

X6

f̄3(x3) =

(∑
x1,x2

f1(x1)f2(x2)f3(x1, x2, x3)︸ ︷︷ ︸
−→µX3

(x3)

)

·

(∑
x4,x5

f4(x4)f5(x3, x4, x5)

(∑
x6,x7

f6(x5, x6, x7)f7(x7)︸ ︷︷ ︸
←−µX5

(x5)

)
︸ ︷︷ ︸

←−µX3
(x3)

)

13

Example cont’d: Messages Everywhere

f1

X1
-

f2

X2?

f3

X3
- �

f4

X4 ?

f5

X5
�

f7

X7 ?

f6

X6

With −→µX1(x1)
4
= f1(x1),

−→µX2(x2)
4
= f2(x2), etc., we have

−→µX3(x3) =
∑
x1,x2

−→µX1(x1)
−→µX2(x2)f3(x1, x2, x3)

←−µX5(x5) =
∑
x6,x7

−→µX7(x7)f6(x5, x6, x7)

←−µX3(x3) =
∑
x4,x5

−→µX4(x4)
←−µX5(x5)f5(x3, x4, x5)

14

The Sum-Product Algorithm (Belief Propagation)

H
HHH

HHH

Y1

..

.

���
����

Yn

g
XH

HHj

���* - �

Sum-product message computation rule:

−→µX(x) =
∑

y1,...,yn

g(x, y1, . . . , yn)
−→µY1(y1) · · · −→µYn(yn)

Sum-product theorem:

If the factor graph for some function f has no cycles, then

f̄X(x) = −→µX(x)←−µX(x).

15

Towards the max-product algorithm:

Computing Max-Marginals—A Generic Example

Assume we wish to compute

f̂3(x3) = max
x1, . . . , x7

except x3

f (x1, . . . , x7)

and assume that f can be factored as follows:

f1

X1

f2

X2

f3

X3

f4

X4

f5

X5

f7

X7

f6

X6

16

Example:

Closing Boxes by the Distributive Law

f1

X1

f2

X2

f3

X3

f4

X4

f5

X5

f7

X7

f6

X6

f̂3(x3) =

(
max
x1,x2

f1(x1)f2(x2)f3(x1, x2, x3)

)

·

(
max
x4,x5

f4(x4)f5(x3, x4, x5)

(
max
x6,x7

f6(x5, x6, x7)f7(x7)

))

17

Example cont’d: Message Passing View

f1

X1

f2

X2

f3

X3
- �

f4

X4

f5

X5
�

f7

X7

f6

X6

f̂3(x3) =

(
max
x1,x2

f1(x1)f2(x2)f3(x1, x2, x3)︸ ︷︷ ︸
−→µX3

(x3)

)

·

(
max
x4,x5

f4(x4)f5(x3, x4, x5)

(
max
x6,x7

f6(x5, x6, x7)f7(x7)︸ ︷︷ ︸
←−µX5

(x5)

)
︸ ︷︷ ︸

←−µX3
(x3)

)

18

Example cont’d: Messages Everywhere

f1

X1
-

f2

X2?

f3

X3
- �

f4

X4 ?

f5

X5
�

f7

X7 ?

f6

X6

With −→µX1(x1)
4
= f1(x1),

−→µX2(x2)
4
= f2(x2), etc., we have

−→µX3(x3) = max
x1,x2

−→µX1(x1)
−→µX2(x2)f3(x1, x2, x3)

←−µX5(x5) = max
x6,x7

−→µX7(x7)f6(x5, x6, x7)

←−µX3(x3) = max
x4,x5

−→µX4(x4)
←−µX5(x5)f5(x3, x4, x5)

19

The Max-Product Algorithm

HH
HHH

HH

Y1

..

.

��
���

��

Yn

g
XHHHj

���* - �

Max-product message computation rule:

−→µX(x) = max
y1,...,yn

g(x, y1, . . . , yn)
−→µY1(y1) · · · −→µYn(yn)

Max-product theorem:

If the factor graph for some global function f has no cycles, then

f̂X(x) = −→µX(x)←−µX(x).

20

Outline

1. Introduction

2. The sum-product and max-product algorithms

3. More about factor graphs

4. Applications of sum-product & max-product
to hidden Markov models

5. Graphs with cycles, continuous variables, . . .

21

Terminology

x1

fA

x2

x3

fB

fC

x4

x5

Global function f = product of all factors; usually (but not always!)
real and nonnegative.

A configuration is an assignment of values to all variables.

The configuration space is the set of all configurations, which is the
domain of the global function.

A configuration ω = (x1, . . . , x5) is valid iff f (ω) 6= 0.

22

Invalid Configurations Do Not Affect Marginals

A configuration ω = (x1, . . . , xn) is valid iff f (ω) 6= 0.

Recall:

1. Marginalization: Compute

f̄k(xk)
4
=

∑
x1, . . . , xn

except xk

f (x1, . . . , xn)

2. Maximization: Compute the “max-marginal”

f̂k(xk)
4
= max

x1, . . . , xn

except xk

f (x1, . . . , xn)

assuming that f is real-valued and nonnegative and has a maximum.

Constraints may be expressed by factors that evaluate to 0 if the
constraint is violated.

23

Branching Point = Equality Constraint Factor

X

X ′

= X ′′ ⇐⇒ X t

The factor

f=(x, x′, x′′)
4
=

{
1, if x = x′ = x′′

0, else

enforces X = X ′ = X ′′ for every valid configuration.

More general:

f=(x, x′, x′′)
4
= δ(x− x′)δ(x− x′′)

where δ denotes the Kronecker delta for discrete variables and the
Dirac delta for discrete variables.

24

Example:

Independent Observations

Let Y1 and Y2 be two independent observations of X:

p(x, y1, y2) = p(x)p(y1|x)p(y2|x).

pX

X

=

pY1|X

Y1

pY2|X

Y2

Literally, the factor graph represents an extended model

p(x, x′, x′′, y1, y2) = p(x)p(y1|x′)p(y2|x′′)f=(x, x′, x′′)

with the same marginals and max-marginals as p(x, y1, y2).

25

From A Priori to A Posteriori Probability

Example (cont’d): Let Y1 = y1 and Y2 = y2 be two independent
observations of X, i.e., p(x, y1, y2) = p(x)p(y1|x)p(y2|x).

For fixed y1 and y2, we have

p(x|y1, y2) =
p(x, y1, y2)

p(y1, y2)
∝ p(x, y1, y2).

pX

X

=

pY1|X

y1

pY2|X

y2

The factorization is unchanged (except for a scale factor).

Known variables will be denoted by small letters;
unknown variables will usually be denoted by capital letters.

26

Outline

1. Introduction

2. The sum-product and max-product algorithms

3. More about factor graphs

4. Applications of sum-product & max-product
to hidden Markov models

5. Graphs with cycles, continuous variables, . . .

27

Example:

Hidden Markov Model

p(x0, x1, x2, . . . , xn, y1, y2, . . . , yn) = p(x0)

n∏
k=1

p(xk|xk−1)p(yk|xk−1)

p(x0)
-

X0 =

?

p(y1|x0)

?

Y1

-

p(x1|x0)

-
X1 =

?

p(y2|x1)

?

Y2

-

p(x2|x1)

-
X2

. . .

28

Sum-product algorithm applied to HMM:

Estimation of Current State

p(xn|y1, . . . , yn) =
p(xn, y1, . . . , yn)

p(y1, . . . , yn)

∝ p(xn, y1, . . . , yn)

=
∑
x0

. . .
∑
xn−1

p(x0, x1, . . . , xn, y1, y2, . . . , yn)

= −→µXn(xn).

For n = 2:

-
X0

- =

?

6

?

y1

-
-

-
X1

- =

?

6

?

y2

-
-

-
X2

- =

?

6=1

?

Y3

-
�

=1
. . .

29

Backward Message in Chain Rule Model

pX

-
X

�

pY |X

-
Y

If Y = y is known (observed):

←−µX(x) = pY |X(y|x),

the likelihood function.

If Y is unknown:

←−µX(x) =
∑

y

pY |X(y|x)

= 1.

30

Sum-product algorithm applied to HMM:

Prediction of Next Output Symbol

p(yn+1|y1, . . . , yn) =
p(y1, . . . , yn+1)

p(y1, . . . , yn)
∝ p(y1, . . . , yn+1)

=
∑

x0,x1,...,xn

p(x0, x1, . . . , xn, y1, y2, . . . , yn, yn+1)

= −→µYn(yn).

For n = 2:

-
X0

- =

?

6

?

y1

-
-

-
X1

- =

?

6

?

y2

-
-

-
X2

- =

?

?

?

Y3?

-
�

=1
. . .

31

Sum-product algorithm applied to HMM:

Estimation of Time-k State

p(xk | y1, y2, . . . , yn) =
p(xk, y1, y2, . . . , yn)

p(y1, y2, . . . , yn)
∝ p(xk, y1, y2, . . . , yn)

=
∑

x0, . . . , xn

except xk

p(x0, x1, . . . , xn, y1, y2, . . . , yn)

= −→µXk
(xk)
←−µXk

(xk)

For k = 1:

-
X0

- =

?

6

?

y1

-
-

-
X1

-
�

=

?

6

?

y2

-
�

-
X2
� =

?

6

?

y3

-
� . . .

32

Sum-product algorithm applied to HMM:

All States Simultaneously

p(xk|y1, . . . , yn) for all k:

-
X0

-
�

=

?

6

?

y1

-
-

�

-
X1

-
�

=

?

6

?

y2

-
-

�

-
X2

-
�

=

?

6

?

y3

-
�

- . . .

In this application, the sum-product algorithm coincides with the
Baum-Welch / BCJR forward-backward algorithm.

33

Scaling of Messages

In all the examples so far:

• The final result (such as −→µXk
(xk)
←−µXk

(xk)) equals the desired
quantity (such as p(xk|y1, . . . , yn)) only up to a scale factor.

• The missing scale factor γ may be recovered at the end from
the condition ∑

xk

γ−→µXk
(xk)
←−µXk

(xk) = 1.

• It follows that messages may be scaled freely along the way.

• Such message scaling is often mandatory to avoid numerical
problems.

34

Sum-product algorithm applied to HMM:

Probability of the Observation

p(y1, . . . , yn) =
∑
x0

. . .
∑
xn

p(x0, x1, . . . , xn, y1, y2, . . . , yn)

=
∑
xn

−→µXn(xn).

This is a number. Scale factors cannot be neglected in this case.

For n = 2:

-
X0

- =

?

6

?

y1

-
-

-
X1

- =

?

6

?

y2

-
-

-
X2

- =

?

6=1

?

Y3

-
�

=1
. . .

35

Max-product algorithm applied to HMM:

MAP Estimate of the State Trajectory

The estimate

(x̂0, . . . , x̂n)MAP = argmax
x0,...,xn

p(x0, . . . , xn|y1, . . . , yn)

= argmax
x0,...,xn

p(x0, . . . , xn, y1, . . . , yn)

may be obtained by computing

p̂k(xk)
4
= max

x1, . . . , xn

except xk

p(x0, . . . , xn, y1, . . . , yn)

= −→µXk
(xk)
←−µXk

(xk)

for all k by forward-backward max-product sweeps.

In this example, the max-product algorithm is a time-symmetric
version of the Viterbi algorithm with soft output.

36

Max-product algorithm applied to HMM:

MAP Estimate of the State Trajectory cont’d

Computing

p̂k(xk)
4
= max

x1, . . . , xn

except xk

p(x0, . . . , xn, y1, . . . , yn)

= −→µXk
(xk)
←−µXk

(xk)

simultaneously for all k:

-
X0

-
�

=

?

6

?

y1

-
-

�

-
X1

-
�

=

?

6

?

y2

-
-

�

-
X2

-
�

=

?

6

?

y3

-
�

- . . .

37

Marginals and Output Edges

Marginals such −→µX(x)←−µX(x) may be viewed as messages out of a
“output half edge” (without incoming message):

-
X

- � =⇒
-

X ′
- = -

X ′′
�

?

X̄ ?

−→µ X̄(x) =

∫
x′

∫
x′′

−→µX ′(x
′)←−µX ′′(x

′′) δ(x− x′) δ(x− x′′) dx′ dx′′

= −→µX ′(x)←−µX ′′(x)

=⇒ Marginals are computed like messages out of “=”-nodes.

38

Outline

1. Introduction

2. The sum-product and max-product algorithms

3. More about factor graphs

4. Applications of sum-product & max-product
to hidden Markov models

5. Graphs with cycles, continuous variables, . . .

39

Factor Graphs with Cycles? Continuous Variables?

-

�

6
?

6
?

-

�

-

�

6
?

6
?

-

�

-

�

-

�

6
?

-

�

6
?

-

�

40

Example:

Error Correcting Codes (e.g. LDPC Codes)

Codeword x = (x1, . . . , xn) ∈ C ⊂ {0, 1}n. Received y = (y1, . . . , yn) ∈ Rn.

p(x, y) ∝ p(y|x)δC(x).
f⊕(z1, . . . , zm)

=

{
1, if z1 + . . . + zm ≡ 0 mod 2

0, else

code membership function

δC(x) =

{
1, if x ∈ C
0, else

“random” connections

=
L
L

�
�

=
\

\
�
�

=
\

\
L
L

�
�

⊕
�
�

L
L
\
\

⊕
�

�
�
�

L
L

. . .

channel model p(y|x)

e.g., p(y|x) =

n∏
`=1

p(y`|x`)

X1

y1

X2

y2

Xn

yn

Decoding by iterative sum-product message passing.

41

Example:

Magnets, Spin Glasses, etc.

Configuration x = (x1, . . . , xn), xk ∈ {0, 1}.

“Energy” w(x) =
∑

k

βkxk +
∑

neighboring pairs (k, `)

βk,`(xk − x`)
2

p(x) ∝ e−w(x) =
∏
k

e−βkxk
∏

neighboring pairs (k, `)

e−βk,`(xk−x`)
2

=
HH

=
HH

=
HH

=
HH

=
HH

=
HH

=
HH

=
HH

=
HH

42

Example:

Hidden Markov Model with Parameter(s)

p(x0, x1, x2, . . . , xn, y1, y2, . . . , yn | θ) = p(x0)

n∏
k=1

p(xk|xk−1, θ)p(yk|xk−1)

p(x0)
-

X0 =

?

?

Y1

-

p(x1|x0, θ)

-
X1 =

?

?

Y2

-

p(x2|x1, θ)

-
X2

. . .

Θ
=

?

=

?

43

Example:

Least-Squares Problems

Minimizing
n∑

k=1

x2
k subject to (linear or nonlinear) constraints is

equivalent to maximizing

e−
∑n

k=1 x2
k =

n∏
k=1

e−x2
k

subject to the given constraints.

constraints

X1

e−x2
1

. . .
Xn

e−x2
n

44

General Linear State Space Model

. . .
-

Xk−1
Ak

-

?

Uk

Bk

?

+ -
Xk =

?

Ck

?
Yk

-Ak+1
-

?

Uk+1

Bk+1

?

+ -
Xk+1 =

?

Ck+1

?
Yk+1

-

. . .

Xk = AkXk−1 + BkUk

Yk = CkXk

45

Gaussian Message Passing in Linear Models

encompasses much of classical signal processing and appears often
as a component of more complex problems/algorithms.

Note:

1. Gaussianity of messages is preserved in linear models.

2. Includes Kalman filtering and recursive least-squares algorithms.

3. For Gaussian messages, the sum-product (integral-product) al-
gorithm coincides with the max-product algorithm.

4. For jointly Gaussian random variables,
MAP estimation = MMSE estimation = LMMSE estimation.

5. Even if X and Y are not jointly Gaussian, the LMMSE estimate
of X from Y = y may be obtained by pretending that X and Y
are jointly Gaussian (with their actual means and second-order
moments) and forming the corresponding MAP estimate.

See “The factor graph approach to model-based signal processing,”

Proceedings of the IEEE, June 2007.

46

Continuous Variables: Message Types

The following message types are widely applicable.

• Quantization of messages into discrete bins. Infeasible in higher
dimensions.

• Single point: the message µ(x) is replaced by a temporary or
final estimate x̂.

• Function value and gradient at a point selected by the receiving
node. Allows steepest-ascent (descent) algorithms.

• Gaussians. Works for Kalman filtering.

• Gaussian mixtures.

• List of samples: a pdf can be represented by a list of samples.
This data type is the basis of particle filters, but it can be used
as a general data type in a graphical model.

• Compound messages: the “product” of other message types.

47

Particle Methods as Message Passing

Basic idea: represent a probability density f by a list

L =
(
(x̂(1), w(1)), . . . (x̂(L), w(L))

)
of weighted samples (“particles”):

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

(In [1] and [7], the integral (5) is actually a finite sum.)

Define the state metric µk(sk)
!

= p(sk, yk). By straightforward
application of the sum-product algorithm [13] we recursively

compute the messages (state metrics)

µk(sk) =

∫

xk

∫

sk−1

µk−1(sk−1)

·p(xk, yk, sk|sk−1) dxk dsk−1 (6)

=

∫

xk

∫

sk−1

0

p(xk, yk, sk
0) dxk dsk−1

0 (7)

for k = 1, 2, 3, . . . with µ0(s0)
!

= p(s0). The desired quantity
(5) is then obtained as

p(yn) =

∫

sn

µn(sn) dsn, (8)

the sum of (or the integral over) all final state metrics.

For large k, the state metrics µk computed according to (6)

quickly tend to zero. In practice, the recursion (6) is therefore

changed to

µk(sk) = λk

∫

xk

∫

sk−1

µk−1(sk−1)

· p(xk, yk, sk|sk−1) dxk dsk−1, (9)

where λ1, λ2, . . . are positive scale factors. We will choose

these factors such that

∫

sk

µk(sk) dsk = 1 (10)

holds for all k, i.e.,

λ−1
k =

∫

xk

∫

sk−1

∫

sk

µk−1(sk−1)

· p(xk, yk, sk|sk−1) dxk dsk−1 dsk

(11)

=

∫

xk

∫

sk−1

∫

sk

µk−1(sk−1)p(xk, sk|sk−1)

· p(yk|xk, sk, sk−1) dxk dsk−1 dsk.
(12)

It follows that

1

n

n
∑

k=1

log λk = −
1

n
log p(yn). (13)

The quantity − 1
n log p(yn) thus appears as the average of

the logarithms of the scale factors, which converges (almost

surely) to h(Y).

If necessary, the quantities log p(xn) and log p(xn, yn) can
be computed by the same method, see [7].

For use in Section III, we note that λ−1
k (12) may be written

as an expectation; due to the normalization (10), the state

metric µk(sk) now equals p(sk|yk), and therefore:

λ−1
k =

∫

xk

∫

sk−1

∫

sk

p(sk−1|yk−1)p(xk, sk|sk−1)

· p(yk|xk, sk, sk−1) dxk dsk−1 dsk (14)

=

∫

xk

∫

sk−1

∫

sk

p(sk−1, sk, xk|yk−1)

· p(yk|xk, sk, sk−1) dxk dsk−1 dsk (15)

= E
[

p(yk|Xk, Sk, Sk−1)|Y k−1
]

, (16)

where the expectation is with respect to the probability density

p(sk−1, sk, xk|yk−1) = p(sk−1|yk−1)p(xk, sk|sk−1) (17)

= µk−1(sk−1)p(xk, sk|sk−1). (18)

III. A PARTICLE METHOD

x

f

Fig. 2. A probability density function f : R → R+ and its representation
as a list of particles.

If both the input alphabet X and the state space S are finite
sets (and the alphabet of X and S is not too large), then

the method of the previous section is a practical algorithm.

However, we are now interested in the case where S (and

perhaps also X) is continuous, as stated in the introduction.
In this case, the computation of (9) and (16) is a problem.

This problem can be addressed by Monte-Carlo methods

known as sequential Monte-Carlo integration (“particle fil-

tering”) [11], [12]. Such algorithms may be viewed as mes-

sage passing algorithms where the messages (which represent

probability distributions) are represented by a list of samples

(“particles”) [15], [19] (see Fig. 2); a list Lf of N particles

representing the probability density f(x) with x ∈ X is

formally defined as a list of pairs

Lf
!

=
{

(x̂(1), w(1)), (x̂(2), w(2)), . . . , (x̂(N), w(N))
}

(19)

!

=
{

(x̂(!), w(!))
}N

!=1
, (20)

with x̂(!) ∈ X and where the weights w(!) are positive real

numbers such that
∑N

!=1 w(!) = 1.
In particular, we will represent the message µk by a list ofN

particles {ŝ(!)
k , w

(!)
k }N

!=1, and we will represent the distribution

p(sk−1, sk, xk|yk−1) (18) by a list of N (weighted) three-

tuples {(ŝ(!)
k−1, ŝ

(!)
k , x̂

(!)
k), w(!)

k−1}N
!=1. The expectation (16) is

then approximately computed as an average over those N
(weighted) three-tuples:

λ−1
k ≈

N
∑

!=1

w
(!)
k−1 p(yk|ŝ(!)

k−1, ŝ
(!)
k , x̂

(!)
k). (21)

The recursive computation of (9) is accomplished as follows.

• Versatile data type for sum-product, max-product, EM, . . .

• Not sensitive to dimensionality.

48

On Factor Graphs with Cycles

• Generally iterative algorithms.

• For example, alternating maximization

x̂new = argmax
x

f (x, ŷ) and ŷnew = argmax
y

f (x̂, y)

using the max-product algorithm in each iteration.

• Iterative sum-product message passing gives excellent results
for maximization(!) in some applications (e.g., the decoding of
error correcting codes).

• Many other useful algorithms can be formulated in message
passing form (e.g., J. Dauwels): gradient ascent, Gibbs sam-
pling, expectation maximization, variational methods, clustering
by “affinity propagation” (B. Frey) . . .

• Factor graphs facilitate to mix and match different algorithmic
techniques.

End of this talk.

