

An Introduction to Factor Graphs

Hans-Andrea Loeliger

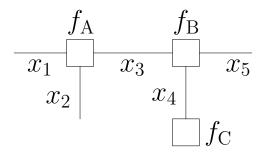
MLSB 2008, Copenhagen

Definition

A factor graph represents the factorization of a function of several variables. We use Forney-style factor graphs (Forney, 2001).

Example:

 $f(x_1, x_2, x_3, x_4, x_5) = f_{\mathcal{A}}(x_1, x_2, x_3) \cdot f_{\mathcal{B}}(x_3, x_4, x_5) \cdot f_{\mathcal{C}}(x_4).$



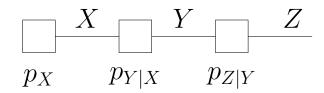
Rules:

- A node for every factor.
- An edge or half-edge for every variable.
- Node g is connected to edge x iff variable x appears in factor g.

(What if some variable appears in more than 2 factors?)

Example: Markov Chain

 $p_{XYZ}(x, y, z) = p_X(x) p_{Y|X}(y|x) p_{Z|Y}(z|y).$

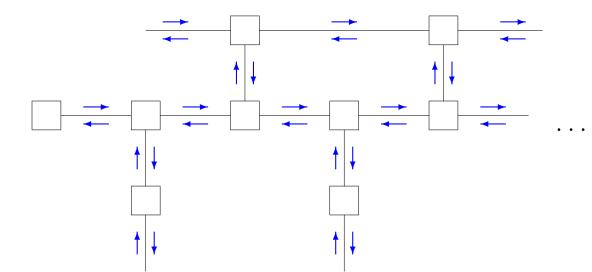


We will often use capital letters for the variables. (Why?)

Further examples will come later.

Message Passing Algorithms

operate by passing messages along the edges of a factor graph:



A main point of factor graphs (and similar graphical notations):

A Unified View of Historically Different Things

Statistical physics:

- Markov random fields (Ising 1925)

Signal processing:

- linear state-space models and Kalman filtering: Kalman 1960...
- recursive least-squares adaptive filters
- Hidden Markov models: Baum et al. 1966...
- unification: Levy et al. 1996...

Error correcting codes:

- Low-density parity check codes: Gallager 1962; Tanner 1981; MacKay 1996; Luby et al. 1998...

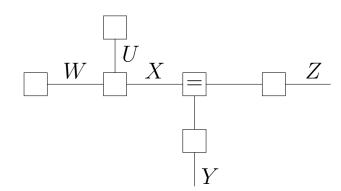
- Convolutional codes and Viterbi decoding: Forney 1973...
- Turbo codes: Berrou et al. 1993...

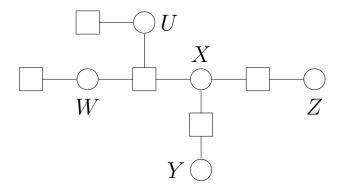
Machine learning, statistics:

- Bayesian networks: Pearl 1988; Shachter 1988; Lauritzen and Spiegelhalter 1988; Shafer and Shenoy 1990...

Other Notation Systems for Graphical Models

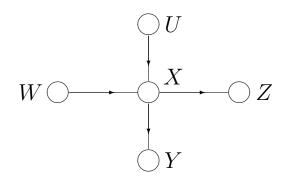
 $\mathsf{Example:} \ p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x).$



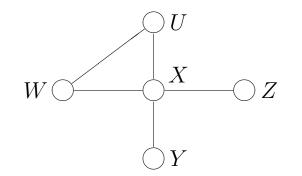


Forney-style factor graph.

Original factor graph [FKLW 1997].



Bayesian network.



Markov random field.

Outline

- 1. Introduction
- 2. The sum-product and max-product algorithms
- 3. More about factor graphs
- 4. Applications of sum-product & max-product to hidden Markov models
- 5. Graphs with cycles, continuous variables, ...

The Two Basic Problems

1. Marginalization: Compute

$$\bar{f}_k(x_k) \stackrel{\triangle}{=} \sum_{\substack{x_1, \dots, x_n \\ \text{except } x_k}} f(x_1, \dots, x_n)$$

2. Maximization: Compute the "max-marginal"

$$\hat{f}_k(x_k) \stackrel{\Delta}{=} \max_{\substack{x_1, \dots, x_n \\ except \ x_k}} f(x_1, \dots, x_n)$$

assuming that f is real-valued and nonnegative and has a maximum. Note that

$$\operatorname{argmax} f(x_1, \dots, x_n) = \left(\operatorname{argmax} \hat{f}_1(x_1), \dots, \operatorname{argmax} \hat{f}_n(x_n)\right)$$

For large n, both problems are in general intractable even for $x_1, \ldots, x_n \in \{0, 1\}$.

Factorization Helps

For example, if $f(x_1, \ldots, f_n) = f_1(x_1)f_2(x_2)\cdots f_n(x_n)$ then

$$\bar{f}_k(x_k) = \left(\sum_{x_1} f_1(x_1)\right) \cdots \left(\sum_{x_{k-1}} f_{k-1}(x_{k-1})\right) f_k(x_k) \cdots \left(\sum_{x_n} f_n(x_n)\right)$$

and

$$\hat{f}_k(x_k) = \left(\max_{x_1} f_1(x_1)\right) \cdots \left(\max_{x_{k-1}} f_{k-1}(x_{k-1})\right) f_k(x_k) \cdots \left(\max_{x_n} f_n(x_n)\right).$$

Factorization helps also beyond this trivial example.

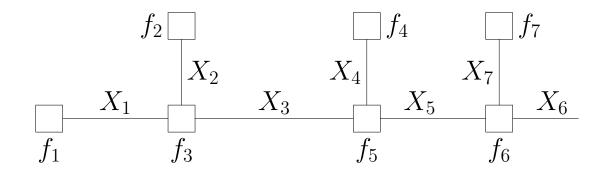
Towards the sum-product algorithm:

Computing Marginals—A Generic Example

Assume we wish to compute

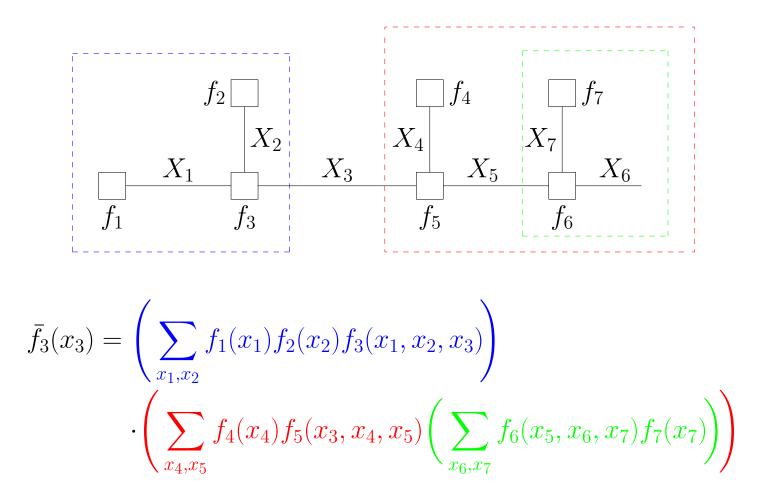
$$\bar{f}_3(x_3) = \sum_{\substack{x_1, \dots, x_7 \\ \text{except } x_3}} f(x_1, \dots, x_7)$$

and assume that f can be factored as follows:



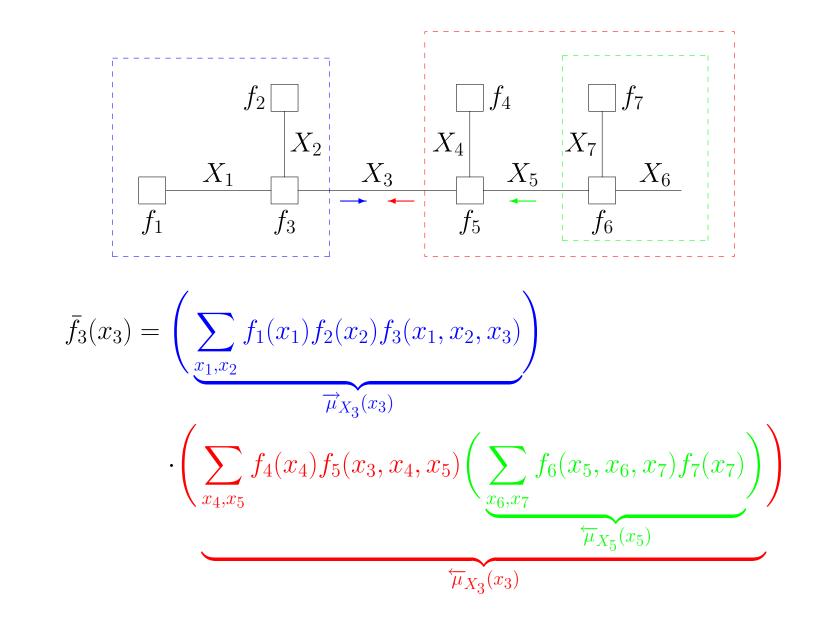
Example cont'd:

Closing Boxes by the Distributive Law

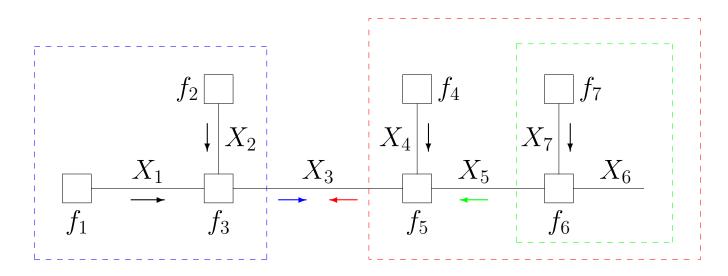


11

Example cont'd: Message Passing View



Example cont'd: Messages Everywhere



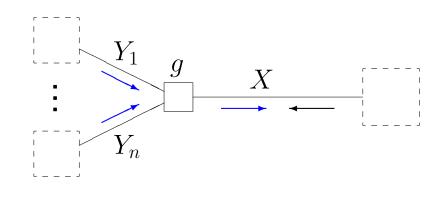
With $\overrightarrow{\mu}_{X_1}(x_1) \stackrel{\scriptscriptstyle riangle}{=} f_1(x_1)$, $\overrightarrow{\mu}_{X_2}(x_2) \stackrel{\scriptscriptstyle riangle}{=} f_2(x_2)$, etc., we have

$$\overrightarrow{\mu}_{X_3}(x_3) = \sum_{x_1, x_2} \overrightarrow{\mu}_{X_1}(x_1) \overrightarrow{\mu}_{X_2}(x_2) f_3(x_1, x_2, x_3)$$

$$\overleftarrow{\mu}_{X_5}(x_5) = \sum_{x_6, x_7} \overrightarrow{\mu}_{X_7}(x_7) f_6(x_5, x_6, x_7)$$

$$\overleftarrow{\mu}_{X_3}(x_3) = \sum_{x_4, x_5} \overrightarrow{\mu}_{X_4}(x_4) \overleftarrow{\mu}_{X_5}(x_5) f_5(x_3, x_4, x_5)$$

The Sum-Product Algorithm (Belief Propagation)



Sum-product message computation rule:

$$\overrightarrow{\mu}_X(x) = \sum_{y_1,\dots,y_n} g(x,y_1,\dots,y_n) \overrightarrow{\mu}_{Y_1}(y_1) \cdots \overrightarrow{\mu}_{Y_n}(y_n)$$

Sum-product theorem:

If the factor graph for some function f has no cycles, then

$$\overline{f}_X(x) = \overrightarrow{\mu}_X(x)\overleftarrow{\mu}_X(x).$$

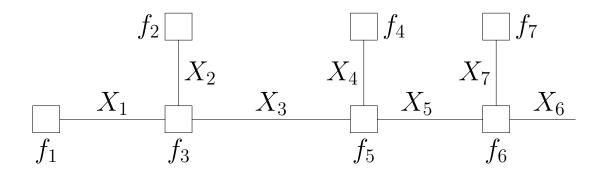
Towards the max-product algorithm:

Computing Max-Marginals—A Generic Example

Assume we wish to compute

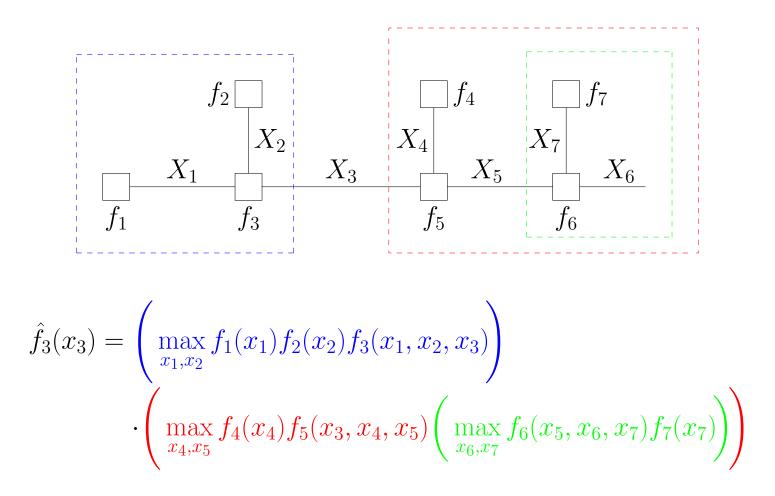
$$\hat{f}_3(x_3) = \max_{\substack{x_1, \dots, x_7 \\ \text{except } x_3}} f(x_1, \dots, x_7)$$

and assume that f can be factored as follows:

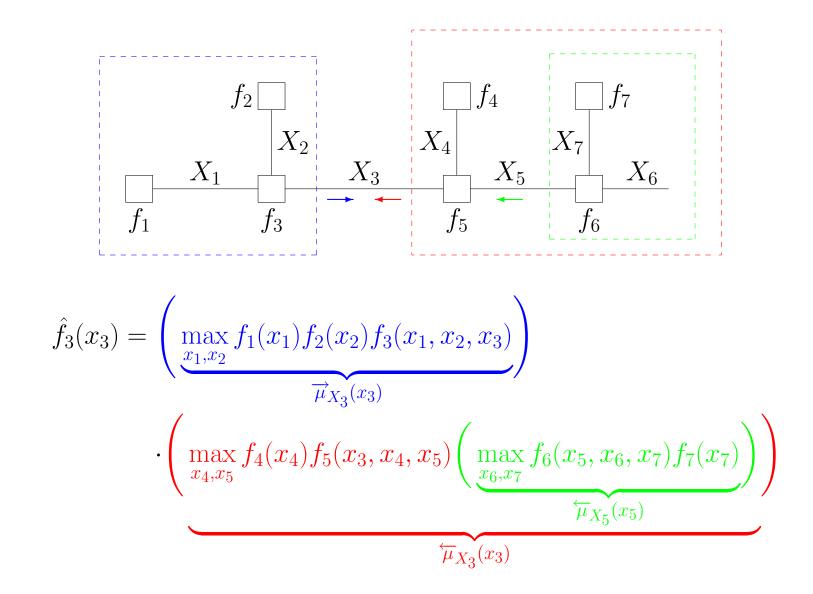


Example:

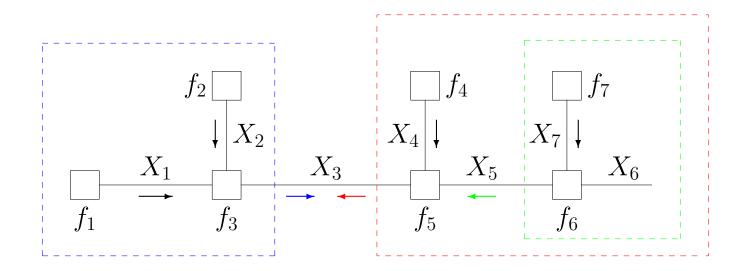
Closing Boxes by the Distributive Law



Example cont'd: Message Passing View



Example cont'd: Messages Everywhere



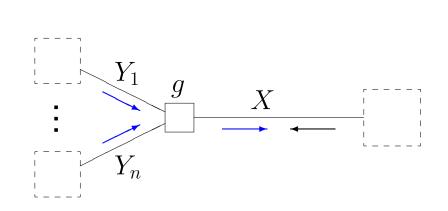
With $\overrightarrow{\mu}_{X_1}(x_1) \stackrel{\scriptscriptstyle riangle}{=} f_1(x_1)$, $\overrightarrow{\mu}_{X_2}(x_2) \stackrel{\scriptscriptstyle riangle}{=} f_2(x_2)$, etc., we have

$$\vec{\mu}_{X_3}(x_3) = \max_{x_1, x_2} \vec{\mu}_{X_1}(x_1) \vec{\mu}_{X_2}(x_2) f_3(x_1, x_2, x_3)$$

$$\overleftarrow{\mu}_{X_5}(x_5) = \max_{x_6, x_7} \vec{\mu}_{X_7}(x_7) f_6(x_5, x_6, x_7)$$

$$\overleftarrow{\mu}_{X_3}(x_3) = \max_{x_4, x_5} \vec{\mu}_{X_4}(x_4) \overleftarrow{\mu}_{X_5}(x_5) f_5(x_3, x_4, x_5)$$

The Max-Product Algorithm



Max-product message computation rule:

$$\overrightarrow{\mu}_X(x) = \max_{y_1,\dots,y_n} g(x, y_1, \dots, y_n) \overrightarrow{\mu}_{Y_1}(y_1) \cdots \overrightarrow{\mu}_{Y_n}(y_n)$$

Max-product theorem:

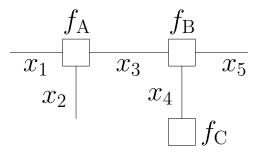
If the factor graph for some global function f has no cycles, then

$$\hat{f}_X(x) = \overrightarrow{\mu}_X(x)\overleftarrow{\mu}_X(x).$$

Outline

- 1. Introduction
- 2. The sum-product and max-product algorithms
- 3. More about factor graphs
- 4. Applications of sum-product & max-product to hidden Markov models
- 5. Graphs with cycles, continuous variables, ...

Terminology



Global function f = product of all factors; usually (but not always!) real and nonnegative.

A configuration is an assignment of values to all variables.

The configuration space is the set of all configurations, which is the domain of the global function.

A configuration $\omega = (x_1, \ldots, x_5)$ is valid iff $f(\omega) \neq 0$.

Invalid Configurations Do Not Affect Marginals

A configuration $\omega = (x_1, \ldots, x_n)$ is valid iff $f(\omega) \neq 0$.

Recall:

1. Marginalization: Compute

$$ar{f}_k(x_k) \stackrel{ riangle}{=} \sum_{\substack{x_1, \dots, x_n \\ ext{except } x_k}} f(x_1, \dots, x_n)$$

2. Maximization: Compute the "max-marginal"

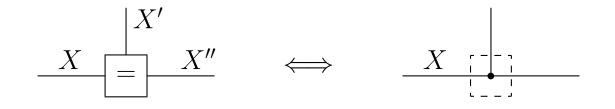
$$\hat{f}_k(x_k) \stackrel{\Delta}{=} \max_{\substack{x_1, \dots, x_n}} f(x_1, \dots, x_n)$$

except x_k

assuming that f is real-valued and nonnegative and has a maximum.

Constraints may be expressed by factors that evaluate to 0 if the constraint is violated.

Branching Point = Equality Constraint Factor



The factor

$$f_{=}(x, x', x'') \stackrel{\scriptscriptstyle \triangle}{=} \begin{cases} 1, \text{ if } x = x' = x'' \\ 0, \text{ else} \end{cases}$$

enforces X = X' = X'' for every valid configuration.

More general:

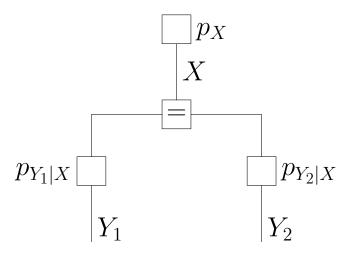
$$f_{=}(x, x', x'') \stackrel{\triangle}{=} \delta(x - x')\delta(x - x'')$$

where δ denotes the Kronecker delta for discrete variables and the Dirac delta for discrete variables.

Example:

Independent Observations

Let Y_1 and Y_2 be two independent observations of X: $p(x,y_1,y_2) = p(x)p(y_1|x)p(y_2|x).$



Literally, the factor graph represents an extended model

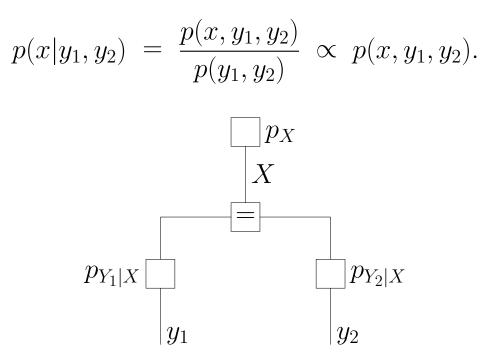
 $p(x, x', x'', y_1, y_2) = p(x)p(y_1|x')p(y_2|x'')f_{=}(x, x', x'')$

with the same marginals and max-marginals as $p(x, y_1, y_2)$.

From A Priori to A Posteriori Probability

Example (cont'd): Let $Y_1 = y_1$ and $Y_2 = y_2$ be two independent observations of X, i.e., $p(x, y_1, y_2) = p(x)p(y_1|x)p(y_2|x)$.

For fixed y_1 and y_2 , we have



The factorization is unchanged (except for a scale factor).

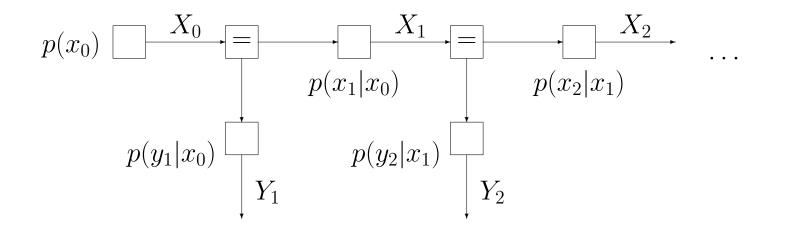
Known variables will be denoted by small letters; unknown variables will usually be denoted by capital letters.

Outline

- 1. Introduction
- 2. The sum-product and max-product algorithms
- 3. More about factor graphs
- 4. Applications of sum-product & max-product to hidden Markov models
- 5. Graphs with cycles, continuous variables, ...

Example: Hidden Markov Model

$$p(x_0, x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = p(x_0) \prod_{k=1}^n p(x_k | x_{k-1}) p(y_k | x_{k-1})$$



Sum-product algorithm applied to HMM:

Estimation of Current State

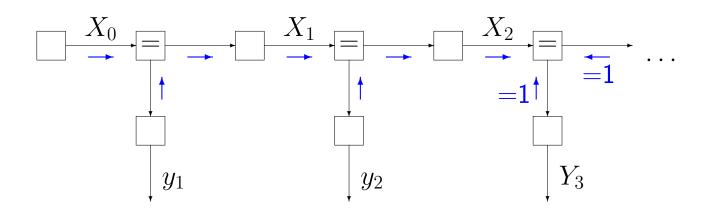
$$p(x_n|y_1,\ldots,y_n) = \frac{p(x_n,y_1,\ldots,y_n)}{p(y_1,\ldots,y_n)}$$

$$\propto p(x_n,y_1,\ldots,y_n)$$

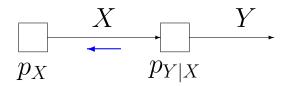
$$= \sum_{x_0} \cdots \sum_{x_{n-1}} p(x_0,x_1,\ldots,x_n,y_1,y_2,\ldots,y_n)$$

$$= \overrightarrow{\mu}_{X_n}(x_n).$$

For n = 2:



Backward Message in Chain Rule Model



If Y = y is known (observed):

$$\overleftarrow{\mu}_X(x) = p_{Y|X}(y|x),$$

the likelihood function.

If Y is unknown:

$$\overleftarrow{\mu}_X(x) = \sum_y p_{Y|X}(y|x)$$
$$= 1.$$

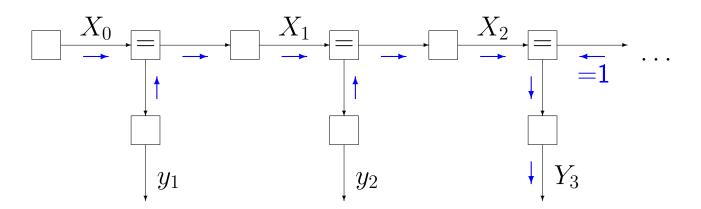
Sum-product algorithm applied to HMM:

Prediction of Next Output Symbol

$$p(y_{n+1}|y_1, \dots, y_n) = \frac{p(y_1, \dots, y_{n+1})}{p(y_1, \dots, y_n)}$$

\$\approx p(y_1, \dots, y_{n+1})\$
\$= \sum_{x_0, x_1, \dots, x_n} p(x_0, x_1, \dots, x_n, y_1, y_2, \dots, y_n, y_{n+1})\$
\$= \vec{\mu}_{Y_n}(y_n).\$

For n = 2:

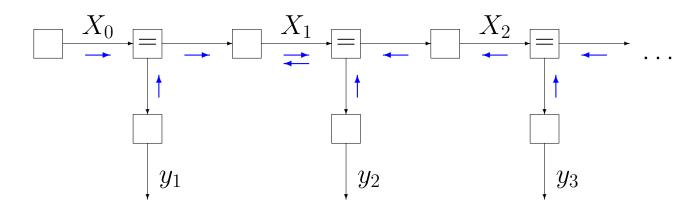


Sum-product algorithm applied to HMM:

Estimation of Time-k **State**

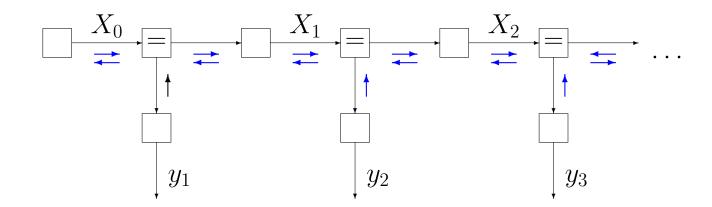
$$p(x_k \mid y_1, y_2, \dots, y_n) = \frac{p(x_k, y_1, y_2, \dots, y_n)}{p(y_1, y_2, \dots, y_n)}$$
$$\propto p(x_k, y_1, y_2, \dots, y_n)$$
$$= \sum_{\substack{x_0, \dots, x_n \\ \text{except } x_k}} p(x_0, x_1, \dots, x_n, y_1, y_2, \dots, y_n)$$

For k = 1:



Sum-product algorithm applied to HMM: All States Simultaneously

 $p(x_k|y_1,\ldots,y_n)$ for all k:



In this application, the sum-product algorithm coincides with the Baum-Welch / BCJR forward-backward algorithm.

Scaling of Messages

In all the examples so far:

- The final result (such as $\overrightarrow{\mu}_{X_k}(x_k)\overleftarrow{\mu}_{X_k}(x_k)$) equals the desired quantity (such as $p(x_k|y_1, \ldots, y_n)$) only up to a scale factor.
- \bullet The missing scale factor γ may be recovered at the end from the condition

$$\sum_{x_k} \gamma \overrightarrow{\mu}_{X_k}(x_k) \overleftarrow{\mu}_{X_k}(x_k) = 1.$$

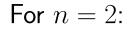
- It follows that messages may be scaled freely along the way.
- Such message scaling is often mandatory to avoid numerical problems.

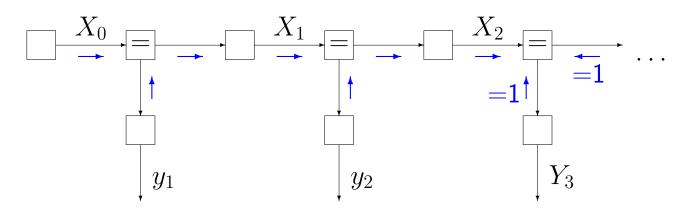
Sum-product algorithm applied to HMM:

Probability of the Observation

$$p(y_1, \dots, y_n) = \sum_{x_0} \dots \sum_{x_n} p(x_0, x_1, \dots, x_n, y_1, y_2, \dots, y_n)$$
$$= \sum_{x_n} \overrightarrow{\mu}_{X_n}(x_n).$$

This is a number. Scale factors cannot be neglected in this case.





Max-product algorithm applied to HMM: MAP Estimate of the State Trajectory

The estimate

$$(\hat{x}_0, \dots, \hat{x}_n)_{\text{MAP}} = \underset{x_0, \dots, x_n}{\operatorname{argmax}} p(x_0, \dots, x_n | y_1, \dots, y_n)$$
$$= \underset{x_0, \dots, x_n}{\operatorname{argmax}} p(x_0, \dots, x_n, y_1, \dots, y_n)$$

may be obtained by computing

$$\hat{p}_k(x_k) \stackrel{\triangle}{=} \max_{\substack{x_1, \dots, x_n \\ \text{except } x_k}} p(x_0, \dots, x_n, y_1, \dots, y_n)$$
$$\stackrel{except x_k}{=} \overrightarrow{\mu}_{X_k}(x_k) \overleftarrow{\mu}_{X_k}(x_k)$$

for all k by forward-backward max-product sweeps.

In this example, the max-product algorithm is a time-symmetric version of the Viterbi algorithm with soft output.

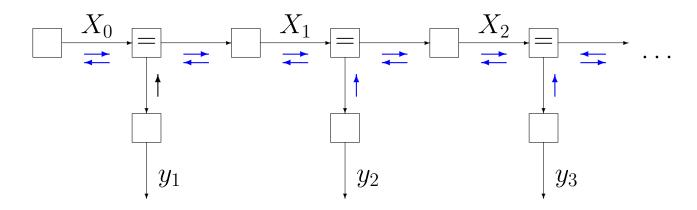
Max-product algorithm applied to HMM:

MAP Estimate of the State Trajectory cont'd

Computing

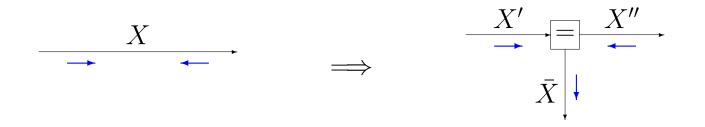
$$\hat{p}_k(x_k) \stackrel{\triangle}{=} \max_{\substack{x_1, \dots, x_n \\ \text{except } x_k}} p(x_0, \dots, x_n, y_1, \dots, y_n)$$
$$\stackrel{\text{except } x_k}{= \overrightarrow{\mu}_{X_k}(x_k)} \overleftarrow{\mu}_{X_k}(x_k)$$

simultaneously for all k:



Marginals and Output Edges

Marginals such $\overrightarrow{\mu}_X(x)\overleftarrow{\mu}_X(x)$ may be viewed as messages out of a "output half edge" (without incoming message):



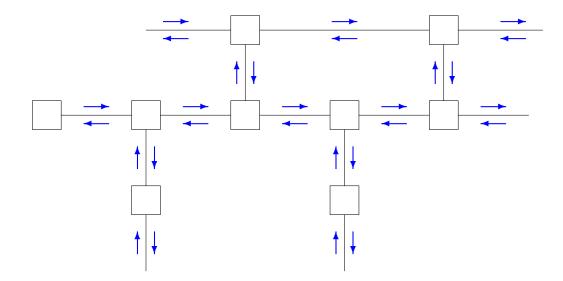
$$\overrightarrow{\mu}_{\bar{X}}(x) = \int_{x'} \int_{x''} \overrightarrow{\mu}_{X'}(x') \overleftarrow{\mu}_{X''}(x'') \,\delta(x - x') \,\delta(x - x'') \,dx' \,dx'' \\ = \overrightarrow{\mu}_{X'}(x) \overleftarrow{\mu}_{X''}(x)$$

 \implies Marginals are computed like messages out of "="-nodes.

Outline

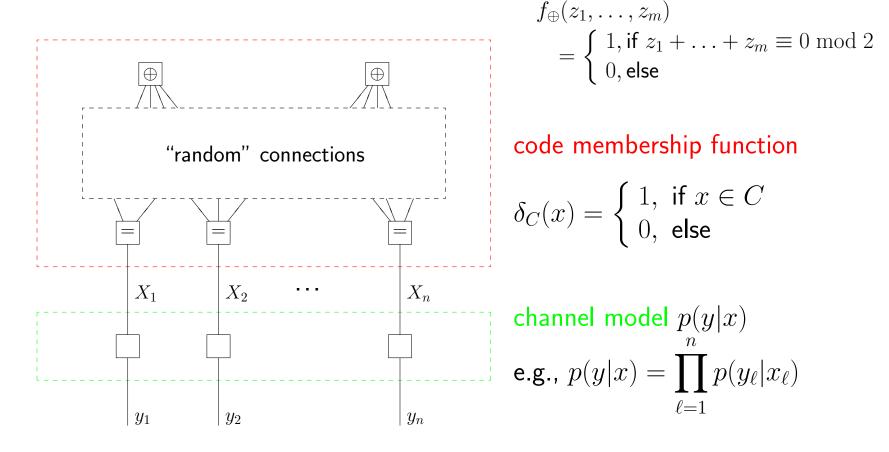
- 1. Introduction
- 2. The sum-product and max-product algorithms
- 3. More about factor graphs
- 4. Applications of sum-product & max-product to hidden Markov models
- 5. Graphs with cycles, continuous variables, ...

Factor Graphs with Cycles? Continuous Variables?



Error Correcting Codes (e.g. LDPC Codes)

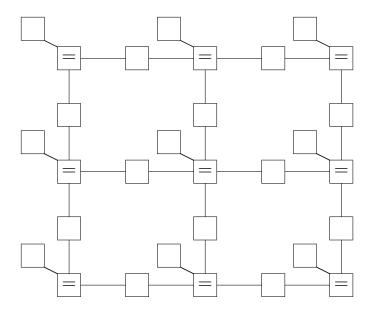
Codeword $x = (x_1, \ldots, x_n) \in C \subset \{0, 1\}^n$. Received $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. $p(x, y) \propto p(y|x)\delta_C(x)$.



Decoding by iterative sum-product message passing.

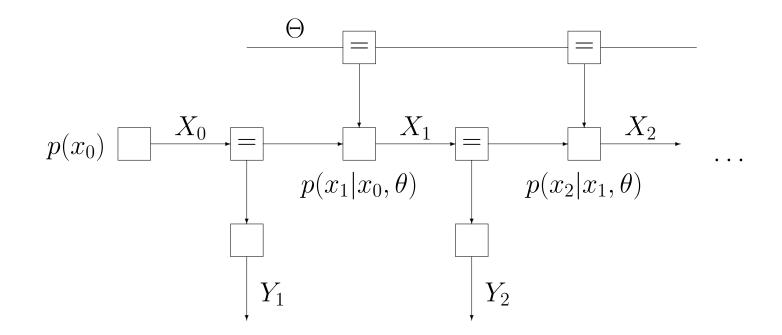
Magnets, Spin Glasses, etc.

Configuration
$$x = (x_1, \dots, x_n)$$
, $x_k \in \{0, 1\}$.
"Energy" $w(x) = \sum_k \beta_k x_k + \sum_{\substack{\text{neighboring pairs } (k, \ell)}} \beta_{k,\ell} (x_k - x_\ell)^2$
 $p(x) \propto e^{-w(x)} = \prod_k e^{-\beta_k x_k} \prod_{\substack{\text{neighboring pairs } (k, \ell)}} e^{-\beta_{k,\ell} (x_k - x_\ell)^2}$



Hidden Markov Model with Parameter(s)

$$p(x_0, x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \mid \theta) = p(x_0) \prod_{k=1}^n p(x_k \mid x_{k-1}, \theta) p(y_k \mid x_{k-1})$$



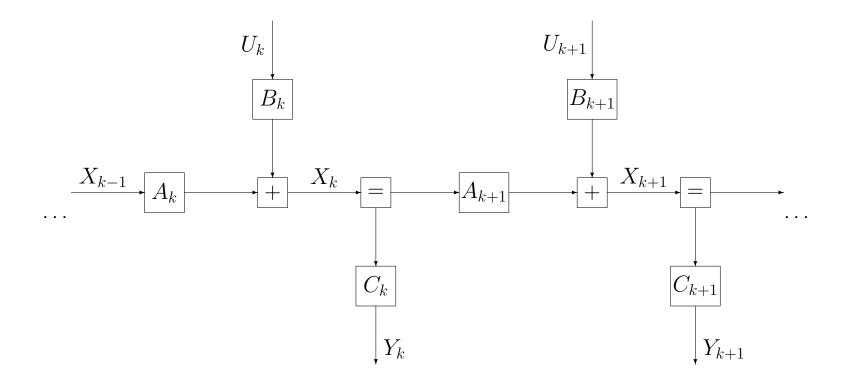
Least-Squares Problems

Minimizing $\sum_{k=1}^n x_k^2$ subject to (linear or nonlinear) constraints is equivalent to maximizing

$$e^{-\sum_{k=1}^{n} x_k^2} = \prod_{k=1}^{n} e^{-x_k^2}$$

subject to the given constraints.

General Linear State Space Model



$$X_k = A_k X_{k-1} + B_k U_k$$
$$Y_k = C_k X_k$$

Gaussian Message Passing in Linear Models

encompasses much of classical signal processing and appears often as a component of more complex problems/algorithms.

Note:

- 1. Gaussianity of messages is preserved in linear models.
- 2. Includes Kalman filtering and recursive least-squares algorithms.
- 3. For Gaussian messages, the sum-product (integral-product) algorithm coincides with the max-product algorithm.
- 4. For jointly Gaussian random variables, MAP estimation = MMSE estimation = LMMSE estimation.
- 5. Even if X and Y are not jointly Gaussian, the LMMSE estimate of X from Y = y may be obtained by pretending that X and Y are jointly Gaussian (with their actual means and second-order moments) and forming the corresponding MAP estimate.

See "The factor graph approach to model-based signal processing," *Proceedings of the IEEE*, June 2007.

Continuous Variables: Message Types

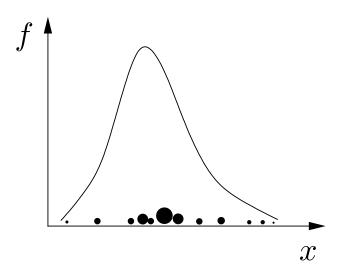
The following message types are widely applicable.

- Quantization of messages into discrete bins. Infeasible in higher dimensions.
- Single point: the message $\mu(x)$ is replaced by a temporary or final estimate \hat{x} .
- Function value and gradient at a point selected by the receiving node. Allows steepest-ascent (descent) algorithms.
- Gaussians. Works for Kalman filtering.
- Gaussian mixtures.
- List of samples: a pdf can be represented by a list of samples. This data type is the basis of particle filters, but it can be used as a general data type in a graphical model.
- Compound messages: the "product" of other message types.

Particle Methods as Message Passing

Basic idea: represent a probability density f by a list $\mathcal{L} = \left((\hat{x}^{(1)}, w^{(1)}), \dots (\hat{x}^{(L)}, w^{(L)}) \right)$

of weighted samples ("particles"):



- Versatile data type for sum-product, max-product, EM,
- Not sensitive to dimensionality.

On Factor Graphs with Cycles

- Generally iterative algorithms.
- For example, alternating maximization

$$\hat{x}_{\text{new}} = \operatorname*{argmax}_{x} f(x, \hat{y}) \text{ and } \hat{y}_{\text{new}} = \operatorname*{argmax}_{y} f(\hat{x}, y)$$

using the max-product algorithm in each iteration.

- Iterative sum-product message passing gives excellent results for maximization(!) in some applications (e.g., the decoding of error correcting codes).
- Many other useful algorithms can be formulated in message passing form (e.g., J. Dauwels): gradient ascent, Gibbs sampling, expectation maximization, variational methods, clustering by "affinity propagation" (B. Frey) ...
- Factor graphs facilitate to mix and match different algorithmic techniques.

End of this talk.